Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728877

ABSTRACT

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Subject(s)
CD40 Antigens , Leishmania major , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred BALB C , Signal Transduction , Animals , Leishmania major/immunology , Leishmania major/physiology , CD40 Antigens/metabolism , Mice , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Macrophages/immunology , Macrophages/parasitology , Humans , Female , Phosphorylation , Host-Parasite Interactions/immunology , MAP Kinase Signaling System/immunology
2.
Immunology ; 164(1): 173-189, 2021 09.
Article in English | MEDLINE | ID: mdl-33964011

ABSTRACT

Multiple pathogen-associated molecular patterns (PAMPs) on a pathogen's surface imply their simultaneous recognition by the host cell membrane-located multiple PAMP-specific Toll-like receptors (TLRs). The TLRs on endosomes recognize internalized pathogen-derived nucleic acids and trigger anti-pathogen immune responses aimed at eliminating the intracellular pathogen. Whether the TLRs influence each other's expression and effector responses-termed TLR interdependency-remains unknown. Herein, we first probed the existence of TLR interdependencies and next determined how targeting TLR interdependencies might determine the outcome of Leishmania infection. We observed that TLRs selectively altered expression of their own and of other TLRs revealing novel TLR interdependencies. Leishmania major-an intra-macrophage parasite inflicting the disease cutaneous leishmaniasis in 88 countries-altered this TLR interdependency unfolding a unique immune evasion mechanism. We targeted this TLR interdependency by selective silencing of rationally chosen TLRs and by stimulation with selective TLR ligands working out a novel phase-specific treatment regimen. Targeting the TLR interdependency elicited a host-protective anti-leishmanial immune response and reduced parasite burden. To test whether this observation could be used as a scientific rationale for treating a potentially fatal L. donovani infection, which causes visceral leishmaniasis, we targeted the inter-TLR dependency adopting the same treatment regimen. We observed reduced splenic Leishman-Donovan units accompanied by host-protective immune response in susceptible BALB/c mice. The TLR interdependency optimizes TLR-induced immune response by a novel immunoregulatory framework and scientifically rationalizes targeting TLRs in tandem and in sequence for redirecting immune responses against an intracellular pathogen.


Subject(s)
Leishmania major/physiology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Toll-Like Receptors/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Gene Silencing , Host-Parasite Interactions , Humans , Immunomodulation , Leishmaniasis, Cutaneous/therapy , Mice , Mice, Inbred BALB C , Pathogen-Associated Molecular Pattern Molecules/immunology , RNA, Small Interfering/genetics , Receptor Cross-Talk , Signal Transduction , Toll-Like Receptors/genetics
3.
Immunology ; 163(4): 460-477, 2021 08.
Article in English | MEDLINE | ID: mdl-33764520

ABSTRACT

Leishmania is a protozoan parasite that resides in mammalian macrophages and inflicts the disease known as leishmaniasis. Although prevalent in 88 countries, an anti-leishmanial vaccine remains elusive. While comparing the virulent and avirulent L. major transcriptomes by microarray, PCR and functional analyses for identifying a novel virulence-associated gene, we identified LmjF.36.3850, a hypothetical protein significantly less expressed in the avirulent parasite and without any known function. Motif search revealed that LmjF.36.3850 protein shared phosphorylation sites and other structural features with sucrose non-fermenting protein (Snf7) that shuttles virulence factors. LmjF.36.3850 was predicted to bind diacylglycerol (DAG) with energy value similar to PKCα and PKCß, to which DAG is a cofactor. Indeed, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a DAG analogue, enhanced the phosphorylation of PKCα and PKCßI. We cloned LmjF.36.3850 gene in a mammalian expression vector and primed susceptible BALB/c mice followed by challenge infection. We observed a higher parasite load, comparable antibody response and higher anti-inflammatory cytokines such as IL-4 and IL-10, while expression of major anti-leishmanial cytokine, IFN-γ, remained unchanged in LmjF.36.3850-vaccinated mice. CSA restimulated LN cells from vaccinated mice after challenge infection secreted comparable IL-4 and IL-10 but reduced IFN-γ, as compared to controls. These observations suggest a skewed Th2 response, diminished IFN-γ secreting Th1-TEM cells and increased central and effector memory subtype of Th2, Th17 and Treg cells in the vaccinated mice. These data indicate that LmjF.36.3850 is a plausible virulence factor that enhances disease-promoting response, possibly by interfering with PKC activation and by eliciting disease-promoting T cells.


Subject(s)
Antigens, Protozoan/metabolism , Leishmania major/physiology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Protozoan Vaccines/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Antigens, Protozoan/genetics , Cells, Cultured , Cloning, Molecular , Cytokines/metabolism , Gene Expression Profiling , Humans , Leishmania major/pathogenicity , Leishmaniasis, Cutaneous/parasitology , Mice , Mice, Inbred BALB C , Parasite Load , Vaccination , Virulence/genetics
4.
J Biomol Struct Dyn ; 39(15): 5348-5357, 2021 09.
Article in English | MEDLINE | ID: mdl-32643540

ABSTRACT

The signaling response of TLR2 to ligands has always been as a homodimer or in heterodimerization with TLR1/TLR6. The Toll/Interleukin-1 Receptor (TIR) domain of the TLR cytoplasmic region regulates the dimerization and interactions with adaptor molecules to build an active signaling complex. To understand the conservation of functionality of the TLR2-heterodimers between the distantly related species human(h) and mice(m), the pattern of TIR-TIR interaction in heterodimers has been studied through the sequence-structural point of view. Comparative analysis of primary sequence and structural pattern of TLRs(1/2/6) corroborates higher sequence homology between TLR1 and TLR6. Molecular docking analysis of TLR2-TLR1 and TLR2-TLR6 cytoplasmic dimers in both mouse and human have identified that for interaction the BB loop/near-BB loop residues of TLR2 are involved with the near-DD loop of TLR1 and DD loop residues of TLR6 within the TIR domains, which may cause to differential signaling. Molecular dynamics simulation of dimers for both human and mice species recognize stable interface between near-BB/BB loop region of TLR2 and discrete near-DD and DD loop region of TLR1 and TLR6 respectively. The observed dimerization pattern in both the species is further supported by Alanine scanning mutation study. However, Solvent Accessible Surface Area (SASA) of BB and DD loop regions of the cytoplasmic monomers and the heterodimers suggests that while TLR2 BB loop is actively associated as the dimer interface with its heterodimer partners in both the species, the DD loop acts as the active interfacing region in hTLR1 and mTLR6. Communicated by Ramaswamy H. Sarma.


Subject(s)
Toll-Like Receptor 1 , Toll-Like Receptor 2 , Animals , Cytoplasm , Humans , Mammals , Mice , Molecular Docking Simulation , Receptors, Interleukin-1/genetics , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics
5.
iScience ; 23(9): 101441, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32827854

ABSTRACT

CD40-Ligand (CD40L)-CD40 interaction regulates immune responses against pathogens, autoantigens, and tumor and transplantation antigens. Single amino acid mutations within the 115-155 amino acids stretch, which is responsible for CD40L functions, result in XIgM syndrome. We hypothesize that each of these amino acids of CD40L encodes specific message that, when decoded by CD40 signaling, induces a specific profile of functions. We observed that every single substitution in the XIgM-related amino acids in the 115-155 41-mer peptide in CD40L selectively altered CD40 signaling and effector functions-cytokine productions, HMGCoA reductase, ceramide synthase, inducible nitric oxide synthase and arginase expression, survival of B cells, and control of Leishmania infection and anti-leishmanial T cell response-suggesting residue-specific encoding of a distinct set of messages that collectively define CD40L pleiotropy, serve as a target for engineering the ligand to generate superagonists as immunotherapeutic, and implicate the evolutionary diversification of functions among the ligands in a protein superfamily.

SELECTION OF CITATIONS
SEARCH DETAIL