Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Sci Health B ; : 1-13, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285648

ABSTRACT

In the present study, persistence and degradation of tembotrione, a triketone herbicide, was studied in loamy soil collected from maize field. Effects of organic amendments, moistures and temperatures on tembotrione dissipation were evaluated. Soil samples were processed according to the modified QuEChERS involving dichloromethane solvent and MgSO4 without PSA. Analysis using LC-MS/MS showed >95% recoveries of tembotrione its two metabolites TCMBA and M5 from fortified soils. Tembotrione residues dissipated with time and 85.55 to 98.53% dissipation was found on 90th day under different treatments. Tembotrione dissipation increased with temperature and moisture content of the soil. Among organic amendments, highest dissipation was observed in vermicompost amended soil. Minimum and maximum half-lives of tembotrione were recorded under 35 °C (15.7 days) and air-dry (33 days) conditions, respectively. Residues of tembotrione declined with time while that of TCMBA increased steadily up to 10-45th day in different treatments and declined thereafter. Residues of M5 were not detected in our experiments. Tembotrione persistence was negatively correlated with the organic carbon (%), moisture regimes, and temperature. A good correlation between soil microbial biomass carbon and degradation was found. A two-way ANOVA indicated significant differences between the treatments at 95% confidence level (p < 0.05).

2.
Biomed Chromatogr ; 38(8): e5939, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886169

ABSTRACT

The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India. Soil samples were extracted using acetone followed by partitioning with dichloromethane, whereas liquid-liquid extraction using dichloromethane was used for aqueous samples. Residues of tembotrione and its metabolite TCMBA, {2-chloro-4-(methylsulfonyl)-3-[(2,2,2-trifluoroethoxy) methyl] benzoic acid}, were quantified using liquid chromatography-tandem mass spectrometry. The data revealed that tembotrione adsorption decreased with increasing pH and dissolved organic matter but increased with salinity. The maximum adsorption occurred at pH 4, 0.01 m sodium citrate and 4 g/L NaCl, with corresponding Freundlich constants of 1.83, 2.28 and 3.32, respectively. The hysteresis index <1 indicated faster adsorption than desorption. Leaching studies under different flow conditions revealed least mobility in UGPZ soil and high mobility in TGPZ soil, consistent with groundwater ubiquity scores of 4.27 and 4.81, respectively. Soil amendments decreased tembotrione mobility in the order: unamended > wheat straw ash > wheat straw > farm yard manure > compost. The transformation of tembotrione to TCMBA and its mobility in soil columns were also assessed.


Subject(s)
Cyclohexanones , Soil Pollutants , India , Soil Pollutants/chemistry , Soil Pollutants/analysis , Adsorption , Cyclohexanones/chemistry , Cyclohexanones/analysis , Soil/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Herbicides/chemistry , Herbicides/analysis , Linear Models , Limit of Detection , Reproducibility of Results , Sulfones
SELECTION OF CITATIONS
SEARCH DETAIL