Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 20(2): 255-263, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33721251

ABSTRACT

The photochemistry of Fe(III) coordinated to natural uronate-containing polysaccharides has been investigated quantitatively in aqueous solution. It is demonstrated that the photoreduction of the coordinated Fe(III) to Fe(II) and oxidative decarboxylation occurs in a variety of uronate-containing polysaccharides. The photochemistry of the Fe(III)-polyuronic acid system generated a radical species during the reaction which was studied using the spin trapping technique. The identity of the radical species from this reaction was confirmed as CO2•- indicating that both bond cleavage of the carboxylate and oxidative decarboxylation after ligand to metal charge transfer radical reactions may be taking place upon irradiation. Degradation of the polyuronic acid chain was investigated with dynamic light scattering, showing a decrease in the hydrodynamic radius of the polymer assemblies in solution after light irradiation that correlates with the Fe(II) generation. A decrease in viscosity of Fe(IIII)-alginate after light irradiation was also observed. Additionally, the photochemical reaction was investigated in plant root tissue (parsnip) demonstrating that Fe(III) coordination in these natural materials leads to photoreactivity that degrades the pectin component. These results highlight that this Fe(III)-polyuronic acid can occur in many natural systems and may play a role in biogeochemical cycling of iron and ferrous iron generation in plants with significant polyuronic acid content.

2.
ACS Appl Bio Mater ; 4(7): 5765-5775, 2021 07 19.
Article in English | MEDLINE | ID: mdl-35006746

ABSTRACT

Coordination of Fe(III) to carboxylates in polyuronic acid hydrogels was used to impart photochemical reactivity to polysaccharide-based hydrogels. This photochemical reaction was then used for light-initiated polymerization to create hydrogels with advanced mechanical and conductive properties by capturing the photogenerated radical with a monomer, either acrylamide, methyl methacrylate, or aniline. The photopolymerization of acrylamide using the Fe(III)-polyuronic acid was quantified in solution and the polymerization efficiency was determined under different conditions. Poly(methyl methacrylate) (PMMA)-modified hydrogels were analyzed by the contact angle, optical microscopy, and rheology. This confirmed formation of a stiff, hydrophobic, PMMA layer on polysaccharide hydrogels after light irradiation in methyl methacrylate. Polyaniline-modified hydrogels were characterized by current-voltage sweeps, which showed the formation of conductive polyaniline integrated into the hydrogel after light irradiation in the aniline monomer. This strategy provided a facile approach to create either layered hydrogels with different stiffness and hydrophobicity or hybrid conductive hydrogels using the simple photochemical reaction of blue light irradiation of Fe(III) coordinated to polyuronic acids.


Subject(s)
Ferric Compounds , Hydrogels , Acrylamide/chemistry , Ferric Compounds/chemistry , Hydrogels/chemistry , Methacrylates , Photochemistry , Polymerization , Polymethyl Methacrylate , Polysaccharides/chemistry
3.
Inorg Chem ; 56(19): 11524-11531, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28914533

ABSTRACT

While polycarboxylates and hydroxyl-acid complexes have long been known to be photoactive, simple carboxylate complexes which lack a significant LMCT band are not typically strongly photoactive. Hence, it was somewhat surprising that a series of reports demonstrated that materials synthesized from iron(III) and polysaccharides such as alginate (poly[guluronan-co-mannuronan]) or pectate (poly[galacturonan]) formed photoresponsive materials that convert from hydrogels to sols under the influence of visible light. These materials have numerous potential applications in areas such as photopatternable materials, materials for controlled drug delivery, and tissue engineering. Despite the near-identity of the functional units in the polysaccharide ligands, the reactivity of iron(III) hydrogels can depend on the configuration of some chiral centers in the sugar units and in the case of alginate the guluronate to mannuronate block composition, as well as pH. Here, using temperature- and field-dependent transmission Mössbauer spectroscopy, we show that the dominant iron compound detected for both the alginate and pectate gels displays features typical of a polymeric (Fe3+O6) system. The Mössbauer spectra of such systems are strongly dependent on temperature, field, size, and crystallinity, indicative of superparamagnetic relaxation of magnetically ordered nanoparticles. Pectate and alginate hydrogels differ in the size distribution of the iron oxyhydroxy nanoparticles, suggesting that in general smaller nanoparticles are more reactive. Potential biological implications of these results are also discussed.


Subject(s)
Alginates/chemistry , Coordination Complexes/chemistry , Iron Compounds/chemistry , Nanoparticles/chemistry , Pectins/chemistry , Hydrogels , Light , Magnetic Phenomena , Particle Size , Spectroscopy, Mossbauer
4.
ACS Appl Mater Interfaces ; 8(23): 14423-9, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27223251

ABSTRACT

Photoresponsive hydrogels were obtained by coordination of alginate-acrylamide hybrid gels (AlgAam) with ferric ions. The photochemistry of Fe(III)-alginate was used to tune the chemical composition, mechanical properties, and microstructure of the materials upon visible light irradiation. The photochemical treatment also induced changes in the swelling properties and transport mechanism in the gels due to the changes in material composition and microstructure. The AlgAam gels were biocompatible and could easily be dried and rehydrated with no change in mechanical properties. These gels showed promise as scaffolds for cartilage tissue engineering, where the photochemical treatment could be used to tune the properties of the material and ultimately change the growth and extracellular matrix production of chondrogenic cells. ATDC5 cells cultured on the hydrogels showed a greater than 2-fold increase in the production of sulfated glycosaminoglycans (sGAG) in the gels irradiated for 90 min compared to the dark controls. Our method provides a simple photochemical tool to postsynthetically control and adjust the chemical and mechanical environment in these gels, as well as the pore microstructure and transport properties. By changing these properties, we could easily access different levels of performance of these materials as substrates for tissue engineering.


Subject(s)
Cartilage/physiology , Hydrogels/radiation effects , Light , Tissue Engineering/methods , Biomechanical Phenomena , Cells, Cultured , Chondrocytes/cytology , Ferric Compounds/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry
5.
ACS Appl Mater Interfaces ; 7(5): 3068-76, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25591038

ABSTRACT

Visible-light responsive gels were prepared from two plant-origin polyuronic acids (PUAs), alginate and pectate, coordinated to Fe(III) ions. Comparative quantitative studies of the photochemistry of these systems revealed unexpected differences in the photoreactivity of the materials, depending on the polysaccharide and its composition. The roles that different functional groups play on the photochemistry of these biomolecules were also examined. Mannuronic-rich alginates were more photoreactive than guluronic acid-rich alginate and than pectate. The microstructure of alginates with different mannuronate-to-guluronate ratios changed with polysaccharide composition. This influenced the gel morphology and the photoreactivity. Coordination hydrogel beads were prepared from both Fe-alginate and Fe-pectate. The beads were stable carriers of molecules as diverse as the dye Congo Red, the vitamin folic acid, and the antibiotic chloramphenicol. The photoreactivity of the hydrogel beads mirrored the photoreactivity of the polysaccharides in solution, where beads prepared with alginate released their cargo faster than beads prepared with pectate. These results indicate important structure-function relationships in these systems and create guidelines for the design of biocompatible polysaccharide-based materials where photoreactivity and controlled release can be tuned on the basis of the type of polysaccharide used and the metal coordination environment.


Subject(s)
Alginates/chemistry , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Iron/chemistry , Pectins/chemistry , Alginates/radiation effects , Delayed-Action Preparations/radiation effects , Glucuronic Acid/chemistry , Glucuronic Acid/radiation effects , Hexuronic Acids/chemistry , Hexuronic Acids/radiation effects , Hydrogels/radiation effects , Iron/radiation effects , Light , Materials Testing , Pectins/radiation effects , Polysaccharides/chemistry , Polysaccharides/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL