Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892069

ABSTRACT

Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.


Subject(s)
Biomarkers , Sarcopenia , Humans , Biomarkers/blood , Sarcopenia/metabolism , Sarcopenia/blood , Sarcopenia/pathology , Pilot Projects , Male , Female , Middle Aged , Aged , Adult , Cytokines/metabolism , Cytokines/blood , Osteoclasts/metabolism , Bone and Bones/metabolism , Bone and Bones/pathology
2.
Materials (Basel) ; 17(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38793481

ABSTRACT

In the development of bone graft substitutes, a fundamental step is the use of scaffolds with adequate composition and architecture capable of providing support in regenerative processes both on the tissue scale, where adequate resistance to mechanical stress is required, as well as at the cellular level where compliant chemical-physical and mechanical properties can promote cellular activity. In this study, based on a previous optimization study of this group, the potential of a three-dimensional construct based on polycaprolactone (PCL) and a novel biocompatible Mg- and Sr-containing glass named BGMS10 was explored. Fourier-transform infrared spectroscopy and scanning electron microscopy showed the inclusion of BGMS10 in the scaffold structure. Mesenchymal stem cells cultured on both PCL and PCL-BGMS10 showed similar tendencies in terms of osteogenic differentiation; however, no significant differences were found between the two scaffold types. This circumstance can be explained via X-ray microtomography and atomic force microscopy analyses, which correlated the spatial distribution of the BGMS10 within the bulk with the elastic properties and topography at the cell scale. In conclusion, our study highlights the importance of multidisciplinary approaches to understand the relationship between design parameters, material properties, and cellular response in polymer composites, which is crucial for the development and design of scaffolds for bone regeneration.

3.
Sci Rep ; 14(1): 7959, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575608

ABSTRACT

Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.


Subject(s)
Artificial Limbs , Titanium , Sheep , Animals , Humans , Prostheses and Implants , Prosthesis Implantation , Osteogenesis , Sheep, Domestic , Skull/diagnostic imaging , Alloys , Materials Testing , Surface Properties
4.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612211

ABSTRACT

The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.

5.
Heliyon ; 10(5): e26796, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444492

ABSTRACT

Regeneration of injured tendons and ligaments (T/L) is a worldwide need. In this study electrospun hierarchical scaffolds made of a poly-L (lactic) acid/collagen blend were developed reproducing all the multiscale levels of aggregation of these tissues. Scanning electron microscopy, microCT and tensile mechanical tests were carried out, including a multiscale digital volume correlation analysis to measure the full-field strain distribution of electrospun structures. The principal strains (εp1 and εp3) described the pattern of strains caused by the nanofibers rearrangement, while the deviatoric strains (εD) revealed the related internal sliding of nanofibers and bundles. The results of this study confirmed the biomimicry of such electrospun hierarchical scaffolds, paving the way to further tissue engineering and clinical applications.

6.
Front Bioeng Biotechnol ; 12: 1345343, 2024.
Article in English | MEDLINE | ID: mdl-38361793

ABSTRACT

Background: Rotator cuff tears (RCTs), resulting from degeneration or trauma of the shoulder tendons, are one of the main causes of shoulder pain. In particular, massive RCTs represent 40% of all injuries, require surgical treatment, and are characterized by poor clinical outcomes and a high rate of failure. In recent years, the use of biological decellularized patches for augmentation procedures has received great interest owing to their excellent self-integration properties, improving healing and, thus, presenting an innovative therapeutic option. However, the findings from clinical studies have emerged with conflicting viewpoints regarding the benefits of this procedure, as an excessive tension load might compromise the integrity of the tendon-to-bone connection when the patch exhibits low elasticity or insufficient strength. This could prevent the healing process, leading to unpredictable results in clinical practice. Methods: This systematic review was conducted following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines across three databases (PubMed, Scopus, and Web of Knowledge) to underline the results obtained in preclinical studies involving animal models of RCT surgeries that utilized the biological decellularized matrix augmentation technique in the last 5 years. Results: Thirteen articles were included after the screening, and the SYRCLE tools were applied to assess the risk of bias in in vivo studies. Open-surgery techniques were conducted to create tendon defects or detachment in different animal models: rat (31%), rabbit (46%), dog (15%), and sheep (8%). Patches decellularized with non-standardized protocols were used in 77% of studies, while commercially available matrices were used in 15%. Of the studies, 31% used allogenic patches, 61% used xenogenic patches, and 8% utilized both xenogenic and autologous patches. Conclusion: Overall, this review provides a comprehensive overview of the use of acellular patches and their effective therapeutic potential in rotator cuff (RC) repair at the preclinical level with the aim of expanding the strategies and matrices available for surgeons. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023468716.

7.
J Biomed Mater Res A ; 112(6): 841-851, 2024 06.
Article in English | MEDLINE | ID: mdl-38185851

ABSTRACT

This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.


Subject(s)
Osteosarcoma , Tissue Scaffolds , Humans , Polyesters/pharmacology , Tissue Engineering/methods
8.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203740

ABSTRACT

Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.


Subject(s)
Circulating MicroRNA , MicroRNAs , Scoliosis , Adolescent , Child , Female , Humans , Circulating MicroRNA/genetics , MicroRNAs/genetics , Osteogenesis/genetics , Proteomics , Scoliosis/genetics
9.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069274

ABSTRACT

Musculoskeletal frailty-a common and debilitating condition linked to aging and chronic diseases-presents a major public health issue. In vivo models have become a key tool for researchers as they investigate the condition's underlying mechanisms and develop effective interventions. This systematic review examines the current body of research on in vivo models of musculoskeletal frailty, without any time constraints. To achieve this aim, we utilized three electronic databases and incorporated a total of 11 studies. Our investigation delves into varied animal models that simulate specific features of musculoskeletal frailty, including muscle loss, bone density reduction, and functional decline. Furthermore, we examine the translational prospects of these models in augmenting our comprehension of musculoskeletal frailty and streamlining the production of groundbreaking therapeutic approaches. This review provides significant insights and guidance for healthcare researchers and practitioners who aim to combat musculoskeletal frailty, ultimately enhancing the quality of life for older adults and individuals affected by this condition.


Subject(s)
Frailty , Humans , Aged , Quality of Life , Aging/physiology , Frail Elderly
10.
Biomimetics (Basel) ; 8(8)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38132556

ABSTRACT

Poly-ε-caprolactone (PCL) has been widely used in additive manufacturing for the construction of scaffolds for bone tissue engineering. However, its use is limited by its lack of bioactivity and inability to induce cell adhesion, hence limiting bone tissue regeneration. Biomimicry is strongly influenced by the dynamics of cell-substrate interaction. Thus, characterizing scaffolds at the cell scale could help to better understand the relationship between surface mechanics and biological response. We conducted atomic force microscopy-based nanoindentation on 3D-printed PCL fibers of ~300 µm thickness and mapped the near-surface Young's modulus at loading forces below 50 nN. In this non-disruptive regime, force mapping did not show clear patterns in the spatial distribution of moduli or a relationship with the topographic asperities within a given region. Remarkably, we found that the average modulus increased linearly with the logarithm of the strain rate. Finally, a dependence of the moduli on the history of nanoindentation was demonstrated on locations of repeated nanoindentations, likely due to creep phenomena capable of hindering viscoelasticity. Our findings can contribute to the rational design of scaffolds for bone regeneration that are capable of inducing cell adhesion and proliferation. The methodologies described are potentially applicable to various tissue-engineered biopolymers.

11.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958603

ABSTRACT

Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1ß, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.


Subject(s)
Cellular Senescence , Cells, Cultured , Hydrogen Peroxide/pharmacology
12.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834212

ABSTRACT

Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Aged , Humans , Biocompatible Materials/pharmacology , Hydrogen Peroxide , Bone Regeneration , Osteogenesis/physiology , Collagen , Durapatite , Osteoblasts
13.
Polymers (Basel) ; 15(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896373

ABSTRACT

Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.

14.
J Clin Med ; 12(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37892761

ABSTRACT

PURPOSE: Osteoarthritis (OA) is one of the most common chronic diseases in the world. It is frequently accompanied by high levels of persistent pain, as well as substantial impairments in function and functional capacity. This review aims to systematically analyze the changes in proprioception and related mechanoreceptors in OA patients. METHODS: Studies from September 2013 to September 2023 were identified by conducting searches on the PubMed, Web of Science, and Scopus electronic databases following the PRISMA statement. One reviewer independently assessed and screened the literature, extracted the data, and graded the studies. The body of evidence underwent an evaluation and grading process using the ROBINS-I tool, which was specifically designed to assess the risk of bias in non-randomized studies of interventions. Results were summarized using descriptive methods. RESULTS: A search through 37 studies yielded 14 clinical studies that were ultimately included. The primary focus of the studies was on the knee joint, particularly the posterior cruciate ligament (PCL). The studies found that PCL in OA patients had impaired proprioceptive accuracy, possibly due to changes in mechanoreceptors (Ruffini, Pacini, and Golgi Mazzoni corpuscles). This suggests that dysfunctional articular mechanoreceptors, especially in severe cases of OA, may contribute to reduced proprioception. Dynamic stabilometry also identified significant proprioceptive deficits in patients with knee articular cartilage lesions, underscoring the impact of such lesions on knee proprioception. CONCLUSIONS: Literature data have shown that proprioceptive accuracy may play an important role in OA, particularly in the knee PCL and cartilage. However, the role of proprioception and related mechanoreceptors needs to be further clarified. Future studies focusing on the relationship between proprioception, OA disease, and symptoms, considering age and gender differences, and exploring OA joints other than the knee should be conducted to improve clinical and surgical outcomes in cases where proprioception and mechanoreceptors are impaired in OA patients.

15.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686179

ABSTRACT

In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Animals , Sheep , Dinoprostone , Endothelial Cells , Machine Learning
16.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569426

ABSTRACT

Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.


Subject(s)
Cell Culture Techniques, Three Dimensional , Neoplasms , Animals , Research Design
17.
Cells ; 12(14)2023 07 11.
Article in English | MEDLINE | ID: mdl-37508486

ABSTRACT

Osteoarthritis (OA) is a joint disorder characterized by progressive degeneration of cartilage extracellular matrix (ECM), chondrocyte hypertrophy and apoptosis and inflammation. The current treatments mainly concern pain control and reduction of inflammation, but no therapeutic strategy has been identified as a disease-modifying treatment. Therefore, identifying specific biomarkers useful to prevent, treat or distinguish the stages of OA disease has become an immediate need of clinical practice. The role of microRNAs (miRNAs) in OA has been investigated in the last decade, and increasing evidence has emerged that the influence of the environment on gene expression through epigenetic processes contributes to the development, progression and aggressiveness of OA, in particular acting on the microenvironment modulations. The effects of epigenetic regulation, particularly different miRNA methylation during OA disease, were highlighted in the present systematic review. The evidence arising from this study of the literature conducted in three databases (PubMed, Scopus, Web of Science) suggested that miRNA methylation state already strongly impacts OA progression, driving chondrocytes and synoviocyte proliferation, apoptosis, inflammation and ECM deposition. However, the possibility of understanding the mechanism by which different epigenetic modifications of miRNA or pre-miRNA sequences drive the aggressiveness of OA could be the new focus of future investigations.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , Chondrocytes/metabolism , MicroRNAs/metabolism , Epigenesis, Genetic , Methylation , Osteoarthritis/metabolism , Inflammation/genetics , Inflammation/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism
18.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511617

ABSTRACT

Recently, our group described the application of vertebral bone marrow (vBMA) clot as a cell therapy strategy for spinal fusion. Its beneficial effects were confirmed in aging-associated processes, but the influence of gender is unknown. In this study, we compared the biological properties of vBMA clots and derived vertebral mesenchymal stem cells (MSCs) from female and male patients undergoing spinal fusion procedures and treated with vBMA clot. We analyzed the expression of growth factors (GFs) in vBMA clots and MSCs as well as morphology, viability, doubling time, markers expression, clonogenicity, differentiation ability, senescence factors, Klotho expression, and HOX and TALE gene profiles from female and male donors. Our findings indicate that vBMA clots and derived MSCs from males had higher expression of GFs and greater osteogenic and chondrogenic potential compared to female patients. Additionally, vBMA-clot-derived MSCs from female and male donors exhibited distinct levels of HOX and TALE gene expression. Specifically, HOXA1, HOXB8, HOXD9, HOXA11, and PBX1 genes were upregulated in MSCs derived from clotted vBMA from male donors. These results demonstrate that vBMA clots can be effectively used for spinal fusion procedures; however, gender-related differences should be taken into consideration when utilizing vBMA-clot-based studies to optimize the design and implementation of this cell therapy strategy in clinical trials.


Subject(s)
Bone Marrow , Mesenchymal Stem Cells , Humans , Male , Female , Bone Marrow/metabolism , Cell Differentiation , Genes, Homeobox , Mesenchymal Stem Cells/metabolism , Spine , Intercellular Signaling Peptides and Proteins/metabolism , Bone Marrow Cells , Cell Proliferation , Cells, Cultured
19.
J Clin Med ; 12(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37445558

ABSTRACT

BACKGROUND: Retrograde drilling (RD) is a minimally invasive surgical procedure mainly used for non-displaced osteochondral lesions (OCL) of the talus, dealing with subchondral necrotic sclerotic lesions or subchondral cysts without inducing iatrogenic articular cartilage injury, allowing the revascularization of the subchondral bone and new bone formation. METHODS: This systematic review collected and analyzed the clinical studies of the last 10 years of literature, focusing not only on the clinical results but also on patients' related factors (gender, BMI, age and complications). RESULTS: Sixteen clinical studies were retrieved, and differences in the type of study, follow-up, number and age of patients, lesion type, dimensions, grades and comparison groups were observed, making it difficult to draw conclusions. Nevertheless, lesions on which RD showed the best results were those of I-III grades and not exceeding 150 mm2 in size, showing overall positive results, a good rate of patient satisfaction, improvements in clinical scores, pain reduction and return to daily activities and sports. CONCLUSIONS: There are still few studies dealing with the issue of post-surgical complications and gender-related responses. Further clinical or preclinical studies are thus mandatory to underline the success of this technique, also in light of gender differences.

20.
Pharmaceutics ; 15(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37242586

ABSTRACT

Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...