Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Transl Med ; 22(1): 521, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816839

ABSTRACT

BACKGROUND: Primary malignant brain tumours are more than one-third of all brain tumours and despite the molecular investigation to identify cancer driver mutations, the current therapeutic options available are challenging due to high intratumour heterogeneity. In addition, an immunosuppressive and inflammatory tumour microenvironment strengthens cancer progression. Therefore, we defined an immune and inflammatory profiling of meningioma and glial tumours to elucidate the role of the immune infiltration in these cancer types. METHODS: Using tissue microarrays of 158 brain tumour samples, we assessed CD3, CD4, CD8, CD20, CD138, Granzyme B (GzmB), 5-Lipoxygenase (5-LOX), Programmed Death-Ligand 1 (PD-L1), O-6-Methylguanine-DNA Methyltransferase (MGMT) and Transglutaminase 2 (TG2) expression by immunohistochemistry (IHC). IHC results were correlated using a Spearman correlation matrix. Transcript expression, correlation, and overall survival (OS) analyses were evaluated using public datasets available on GEPIA2 in Glioblastoma (GBM) and Lower Grade Glioma (LGG) cohorts. RESULTS: Seven out of ten markers showed a significantly different IHC expression in at least one of the evaluated cohorts whereas CD3, CD4 and 5-LOX were differentially expressed between GBMs and astrocytomas. Correlation matrix analysis revealed that 5-LOX and GzmB expression were associated in both meningiomas and GBMs, whereas 5-LOX expression was significantly and positively correlated to TG2 in both meningioma and astrocytoma cohorts. These findings were confirmed with the correlation analysis of TCGA-GBM and LGG datasets. Profiling of mRNA levels indicated a significant increase in CD3 (CD3D, CD3E), and CD138 (SDC1) expression in GBM compared to control tissues. CD4 and 5-LOX (ALOX5) mRNA levels were significantly more expressed in tumour samples than in normal tissues in both GBM and LGG. In GBM cohort, GzmB (GZMB), SDC1 and MGMT gene expression predicted a poor overall survival (OS). Moreover, in LGG cohort, an increased expression of CD3 (CD3D, CD3E, CD3G), CD8 (CD8A), GZMB, CD20 (MS4A1), SDC1, PD-L1, ALOX5, and TG2 (TGM2) genes was associated with worse OS. CONCLUSIONS: Our data have revealed that there is a positive and significant correlation between the expression of 5-LOX and GzmB, both at RNA and protein level. Further evaluation is needed to understand the interplay of 5-LOX and immune infiltration in glioma progression.


Subject(s)
Brain Neoplasms , Inflammation , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Male , Inflammation/pathology , Inflammation/immunology , Inflammation/genetics , Female , Middle Aged , Aged , Gene Expression Regulation, Neoplastic , Adult , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor Microenvironment/immunology , Immunohistochemistry , Cohort Studies , Survival Analysis
2.
J Leukoc Biol ; 115(6): 1053-1069, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38242866

ABSTRACT

Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.


Subject(s)
Acyltransferases , Antigens, Bacterial , BCG Vaccine , Bacterial Proteins , Mice, Inbred C57BL , Mycobacterium tuberculosis , Tuberculosis , Animals , Antigens, Bacterial/immunology , Mycobacterium tuberculosis/immunology , Acyltransferases/immunology , BCG Vaccine/immunology , Mice , Tuberculosis/immunology , Tuberculosis/microbiology , Bacterial Proteins/immunology , Female , CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Microbial Viability
3.
Am J Cancer Res ; 11(5): 2174-2187, 2021.
Article in English | MEDLINE | ID: mdl-34094676

ABSTRACT

EZH2 is an enzymatic subunit of PRC2, an epigenetic regulator that triggers the methylation of the histone H3 lysine 27 silencing the transcription of several genes. EZH2 has a critical role in cancer progression, since its overexpression has been associated with increased cancer cell invasiveness, drug resistance and poor patient survival. However, the mechanisms accounting for EZH2 overexpression in cancer remain still unclear. Intriguingly, also HMGA protein overexpression is a feature of many human malignancies and correlates with the presence of metastases and a poor outcome. The HMGA proteins, including HMGA1 and HMGA2, belong to the architectural transcription factors that play a key role in the organization of chromatin structure. Here, we report a statistically significant correlation between HMGA1 and EZH2 expression in human lymphomas. We demonstrate that HMGA1 is able to bind EZH2 promoter and induce its activity. Consistently, silencing of HMGA1 expression results in the downregulation of the EZH2 levels leading to a decreased proliferation and migration rate of human lymphoma cell lines. Therefore, these data identify HMGA1 as an EZH2 activator, suggesting a novel molecular mechanism contributing to EZH2 overexpression in human malignancies and a synergism of these proteins in cancer progression.

4.
Cancers (Basel) ; 13(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567603

ABSTRACT

Non-coding RNA transcripts originating from Ultraconserved Regions (UCRs) have tissue-specific expression and play relevant roles in the pathophysiology of multiple cancer types. Among them, we recently identified and characterized the ultra-conserved-transcript-8+ (uc.8+), whose levels correlate with grading and staging of bladder cancer. Here, to validate uc.8+ as a potential biomarker in bladder cancer, we assessed its expression and subcellular localization by using tissue microarray on 73 human bladder cancer specimens. We quantified uc.8+ by in-situ hybridization and correlated its expression levels with clinical characteristics and patient survival. The analysis of subcellular localization indicated the simultaneous presence of uc.8+ in the cytoplasm and nucleus of cells from the Low-Grade group, whereas a prevalent cytoplasmic localization was observed in samples from the High-Grade group, supporting the hypothesis of uc.8+ nuclear-to-cytoplasmic translocation in most malignant tumor forms. Moreover, analysis of uc.8+ expression and subcellular localization in tumor-surrounding stroma revealed a marked down-regulation of uc.8+ levels compared to the paired (adjacent) tumor region. Finally, deep machine-learning approaches identified nucleotide sequences associated with uc.8+ localization in nucleus and/or cytoplasm, allowing to predict possible RNA binding proteins associated with uc.8+, recognizing also sequences involved in mRNA cytoplasm-translocation. Our model suggests uc.8+ subcellular localization as a potential prognostic biomarker for bladder cancer.

5.
Cell Metab ; 33(2): 300-318.e12, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33421383

ABSTRACT

There is a strong relationship between metabolic state and susceptibility to Mycobacterium tuberculosis (MTB) infection, with energy metabolism setting the basis for an exaggerated immuno-inflammatory response, which concurs with MTB pathogenesis. Herein, we show that controlled caloric restriction (CR), not leading to malnutrition, protects susceptible DBA/2 mice against pulmonary MTB infection by reducing bacterial load, lung immunopathology, and generation of foam cells, an MTB reservoir in lung granulomas. Mechanistically, CR induced a metabolic shift toward glycolysis, and decreased both fatty acid oxidation and mTOR activity associated with induction of autophagy in immune cells. An integrated multi-omics approach revealed a specific CR-induced metabolomic, transcriptomic, and proteomic signature leading to reduced lung damage and protective remodeling of lung interstitial tightness able to limit MTB spreading. Our data propose CR as a feasible immunometabolic manipulation to control MTB infection, and this approach offers an unexpected strategy to boost immunity against MTB.


Subject(s)
Tuberculosis/prevention & control , Animals , Caloric Restriction , Female , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Tuberculosis/immunology , Tuberculosis/metabolism
6.
Int J Mol Sci ; 21(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212946

ABSTRACT

Overactivation of the c-MET/HGF system is a feature of many cancers. We previously reported that type II testicular germ cell tumor (TGCT) cells express the c-MET receptor, forming non-seminomatous lesions that are more positive compared with seminomatous ones. Notably, we also demonstrated that NT2D1 non-seminomatous cells (derived from an embryonal carcinoma lesion) increase their proliferation, migration, and invasion in response to HGF. Herein, we report that HGF immunoreactivity is more evident in the microenvironment of embryonal carcinoma biopsies with respect to seminomatous ones, indicating a tumor-dependent modulation of the testicular niche. PI3K/AKT is one of the signaling pathways triggered by HGF through the c-MET activation cascade. Herein, we demonstrated that phospho-AKT increases in NT2D1 cells after HGF stimulation. Moreover, we found that this pathway is involved in HGF-dependent NT2D1 cell proliferation, migration, and invasion, since the co-administration of the PI3K inhibitor LY294002 together with HGF abrogates these responses. Notably, the inhibition of endogenous PI3K affects collective cell migration but does not influence proliferation or chemotactic activity. Surprisingly, LY294002 administered without the co-administration of HGF increases cell invasion at levels comparable to the HGF-administered samples. This paradoxical result highlights the role of the testicular microenvironment in the modulation of cellular responses and stimulates the study of the testicular secretome in cancer lesions.


Subject(s)
Carcinoma, Embryonal/metabolism , Hepatocyte Growth Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Testicular Neoplasms/metabolism , Carcinoma, Embryonal/genetics , Carcinoma, Embryonal/pathology , Cell Line, Tumor , Hepatocyte Growth Factor/genetics , Humans , Male , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Testicular Neoplasms/genetics
7.
Int J Clin Exp Pathol ; 13(9): 2348-2351, 2020.
Article in English | MEDLINE | ID: mdl-33042341

ABSTRACT

Phyllodes tumor of the breast is a rare fibroepithelial lesion characterized by a propensity for local recurrence and distant metastasis. Its histologic classification, based on morphology, mitotic index and tumor margin, includes malignant, borderline, and benign. These tumors show similar cellular morphology, which may contribute to difficulty in classifying them histologically and in prediction of their clinical behavior. Thus, the identification of new biomarkers detectable also by in situ methods has become indispensable. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) play a relevant role in tumor development and progression in particular in breast cancer. In this study we analyzed the immunohistochemical expression of paralogous HOX13 homeoproteins on a phyllodes tumor case series to validate their usefulness in histologic classification.

8.
Int J Mol Sci ; 21(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825330

ABSTRACT

The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1ß, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1ß isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1ß expression.


Subject(s)
Breast Neoplasms/genetics , Caveolin 1/genetics , Response Elements , Adult , Aged , Cell Line, Tumor , Estradiol/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Histones/genetics , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Middle Aged , Receptors, Estrogen/genetics , Response Elements/drug effects , Response Elements/genetics
9.
J Exp Clin Cancer Res ; 38(1): 459, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31703596

ABSTRACT

BACKGROUND: The biological behavior of epithelial ovarian cancer (EOC) is unique since EOC cells metastasize early to the peritoneum. Thereby, new anti-target agents designed to block trans-coelomic dissemination of EOC cells may be useful as anti-metastatic drugs. The Urokinase Plasminogen Activator Receptor (uPAR) is overexpressed in EOC tissues, and its truncated forms released in sera and/or ascitic fluid are associated with poor prognosis and unfavorable clinical outcome. We documented that uPAR triggers intra-abdominal dissemination of EOC cells through the interaction of its 84-95 sequence with the Formyl Peptide Receptor type 1 (FPR1), even as short linear peptide Ser-Arg-Ser-Arg-Tyr (SRSRY). While the pro-metastatic role of uPAR is well documented, little information regarding the expression and role of FPR1 in EOC is currently available. METHODS: Expression levels of uPAR and FPR1 in EOC cells and tissues were assessed by immunofluorescence, Western blot, or immunohystochemistry. Cell adhesion to extra-cellular matrix proteins and mesothelium as well as mesothelium invasion kinetics by EOC cells were monitored using the xCELLigence technology or assessed by measuring cell-associated fluorescence. Cell internalization of FPR1 was identified on multiple z-series by confocal microscopy. Data from in vitro assays were analysed by one-way ANOVA and post-hoc Dunnett t-test for multiple comparisons. Tissue microarray data were analyzed with the Pearson's Chi-square (χ2) test. RESULTS: Co-expression of uPAR and FPR1 by SKOV-3 and primary EOC cells confers a marked adhesion to vitronectin. The extent of cell adhesion decreases to basal level by pre-exposure to anti-uPAR84-95 Abs, or to the RI-3 peptide, blocking the uPAR84-95/FPR1 interaction. Furthermore, EOC cells exposed to RI-3 or desensitized with an excess of SRSRY, fail to adhere also to mesothelial cell monolayers, losing the ability to cross them. Finally, primary and metastatic EOC tissues express a high level of FPR1. CONCLUSIONS: Our findings identify for the first time FPR1 as a potential biomarker of aggressive EOC and suggests that inhibitors of the uPAR84-95/FPR1 crosstalk may be useful for the treatment of metastatic EOC.


Subject(s)
Cell Adhesion/drug effects , Cell Movement/drug effects , Ovarian Neoplasms/metabolism , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Formyl Peptide/metabolism , Adult , Aged , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cell Line, Tumor , Extracellular Matrix Proteins/metabolism , Female , Gene Expression , Humans , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Receptors, Formyl Peptide/genetics
10.
J Exp Clin Cancer Res ; 38(1): 317, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31319863

ABSTRACT

BACKGROUND: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS: Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS: We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS: Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.


Subject(s)
Extracellular Vesicles/pathology , Integrin alphaV/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Transplantation , Prostatic Neoplasms/metabolism , Proteomics/methods , Up-Regulation
11.
Front Oncol ; 9: 564, 2019.
Article in English | MEDLINE | ID: mdl-31355131

ABSTRACT

Background: Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure that urgently requires effective therapeutic strategies. Current treatments are unable to increase significantly patient survival, which is often limited to <1 year from diagnosis. Virotherapy, based on the use of oncolytic viruses that exert anti-cancer effects by direct cell lysis and through the induction of anti-tumor immune response, represents an alternative therapeutic option for rare tumors with limited life expectancy. In this study, we propose the use of the adenovirus dl922-947, engineered to allow selective replication in cancer cells, to counteract MPM. Methods: We performed a thorough preclinical assessment of dl922-947 effects in a set of MPM cell lines and xenografts. Cytotoxicity of dl922-947 alone and in combination assays was evaluated by sulforhodamine B assay. Cell cycle, calreticulin expression, and high mobility group box protein 1 (HMGB1) secretion were determined by flow cytometry, whereas ATP content was determined by a luminescence-based bioassay. The modulation of angiogenic factors in MPM-infected cells was evaluated through ELISA. Results: We found that dl922-947 infection exhibits cytotoxic effects in MPM cell lines, affecting cell viability, cell cycle progression, and regulating main hallmarks of immunogenic cell death inducing calreticulin surface exposure, HMGB1 and ATP release. Our results also suggest that dl922-947 may affect angiogenic signals by regulation of VEGF-A and IL-8 secretion. Furthermore, dl922-947 shows anti-tumor efficacy in murine xenograft models reducing tumor growth and enhancing survival. Finally, the combination with cisplatin potentiated the cytotoxic effect of dl922-947. Conclusions: Overall our data identify virotherapy, based on the use of dl922-947, as a new possible therapeutic strategy against MPM, which could be used alone, in combination with standard chemotherapy drugs, as shown here, or other approaches also aimed at enhancing the antitumoral immune response elicited by the virus.

13.
Dev Cell ; 47(5): 592-607.e6, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30513302

ABSTRACT

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , HeLa Cells , Homeostasis , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Protein Phosphatase 2/metabolism , T-Lymphocytes/cytology
14.
Oncotarget ; 9(61): 31842-31860, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30159127

ABSTRACT

Type II testicular germ cell tumors (TGCTs) represent the most frequent malignancy in Caucasian males (20-40 years). Even if diagnosed with disseminated disease, >80% of patients are cured; however, a small percentage of cases progress and result in death. It is commonly accepted that these cancers arise from a disturbed testicular embryonic niche that leads to the block of gonocyte differentiation. The subsequent development of the invasive seminomas and non-seminomas is due to a combination of genetic, epigenetic and microenvironment-based alterations (genvironment). Hepatocyte growth factor (HGF) is present in the testicular microenvironment, together with its receptor c-MET, from early embryonic development to an adult stage. In addition, c-MET is a well-known proto-oncogene involved in the onset and progression of various human cancers. Herein, we have investigated the expression and availability of HGF and c-MET in TCam-2, NCCIT and NT2D1 cells, which are type II (T)GCT representative cell lines, and the effect of c-MET activation/repression on the regulation of cancerous biological processes. We found that NT2D1 cells increase their proliferation, polarized migration, and invasion in response to HGF administration. NCCIT cells respond to HGF stimulation only partially, whereas TCam-2 cells do not respond to HGF, at least according to the investigated parameters. Interestingly, the immunohistochemical study of c-MET distribution in TGCTs confirm its presence in both seminoma and non-seminoma lesions with different patterns. Notably, we found the highest c-MET immunoreactivity in the epithelial elements of the various components of TGCTs: teratoma, yolk sac tumor and choriocarcinoma.

15.
Oncotarget ; 9(3): 3576-3589, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29423067

ABSTRACT

Tumor microenvironment (TME) is characterized by multiple immune suppressive mechanisms able to suppress anti-tumor effector cell immunity. Combinatorial strategies, including vaccine and immunomodulatory drugs, need to be developed for improved immunotherapy efficacy. A novel combinatorial approach was assessed in C57BL/6 mice injected with mouse melanoma B16F10 cells. A multi-peptide vaccine (PEPT) was combined with a low dose metronomic chemotherapy (MCT) and an anti-PD-1 checkpoint inhibitor (CI). Statistical analysis were performed with the unpaired two-sided Student's t-test and ANOVA. Animals treated with the multi-peptide vaccine combined with MCT or CI showed remarkable delay in tumor growth and prolonged survival as compared to control groups. The multi-pronged combination including PEPT+MCT+CI was able to prolong survival in all mice and inhibit tumor growth in 66.6% of mice. All animals which did not show tumor growth were re-challenged with the same melanoma cells and one of them showed complete tumor growth inhibition. The anti-tumor effect was associated with strong T cell immune response to vaccine mutated peptides and significant reduction of regulatory T cells. The combination of a vaccine with MCT and CI was highly efficient in potentiating the vaccine's anti-tumor effects. The approach is highly promising to be moved into clinical trial.

16.
Curr Drug Targets ; 19(10): 1220-1226, 2018.
Article in English | MEDLINE | ID: mdl-28641521

ABSTRACT

Single nucleotide polymorphisms (SNPs) in non-coding RNAs (ncRNA) molecules affect gene and protein expression and generate genetic variability influencing the risk of tumor diseases. HOTAIR locates at the heart of the cell memory gene program and represents a prototype of long non coding RNA (LncRNA) due to its capacity to regulate in-trans a distant chromosome landscape. Aberrant expression of HOTAIR is frequently associated with pathogenesis and mostly with metastatic progression of several human cancers. Different polymorphisms, particularly present in intronic sequences, as well as in promoter regions of HOTAIR, are often associated with its aberrant expression, patient prognosis, and cancer susceptibility in different tumor phenotypes. In this minireview, we have summarized the main SNPs in HOTAIR sequence and their relation with cancer risk in several types of solid tumors.


Subject(s)
Biomarkers, Tumor/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Biomarkers, Tumor/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Male , Neoplasms/metabolism , Neoplasms/pathology , Phenotype , RNA, Long Noncoding/metabolism , Risk Assessment , Risk Factors
17.
Diagn Pathol ; 12(1): 50, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28687087

ABSTRACT

BACKGROUND: Solitary fibrous tumor is an uncommon soft tissue neoplasm with intermediate biological behavior, which rarely metastasizes. Malignant solitary fibrous tumor, although not clearly defined, is rarely described in the prostate. The present case is characterized by some peculiarities if compared with previously reported cases of prostatic malignant solitary fibrous tumor. Firstly, it does not show a homogeneous morphology: part of the neoplasm (about 50%) showed the features of a conventional solitary fibrous tumor, while the remaining part showed the features of a malignant solitary fibrous tumor. In addition, the case is the first malignant solitary fibrous tumor reaching a huge diameter of 20 cm and replacing all prostatic parenchyma. Interestingly, normal prostatic parenchyma was observed on left-lobe trans-rectal needle-core biopsies, but was totally absent in surgical specimen. Since radical prostatectomy was carried out about 4 months after the biopsies, such discordant data may suggest exceedingly rapid growth of the neoplasm. CASE PRESENTATION: We report a case of a 62-year-old male, presented at medical observation for urinary retention, constipation and an enlarged prostate gland. A trans-rectal prostatic biopsy showed a low-grade spindle cell neoplasm. Histopathological examination of the prostatectomy specimen showed patternless architecture with hypocellular and hypercellular areas and hemangiopericytoma-like vessels. In some fields the neoplasm was characterized by a high mitotic index and evident cellular atypia. Immunohistochemically, neoplastic cells were positive for CD34, bcl2, CD99, STAT6 and partially for PgR. The neoplasm was diagnosed as a malignant solitary fibrous tumor. CONCLUSIONS: The differential diagnosis of spindle cells tumors arising in the prostrate is broad and includes lesions of epithelial and mesenchymal origin, primary prostatic lesions such as stromal tumors of uncertain malignant potential and stromal sarcoma, as well as anatomically ubiquitous soft tissue neoplasms. Solitary fibrous tumors should be considered in cases of prostatic tumors with a spindled morphology, but malignancy in such tumors is extremely rare in the prostate. A review of literature showed only four additional cases. Because of the unpredictable biological behavior and the possibility of recurrence, a long-term clinical and instrumental follow-up is recommended.


Subject(s)
Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/secondary , Solitary Fibrous Tumors/pathology , Biopsy, Needle/methods , Diagnosis, Differential , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Prostate/pathology , Prostatic Neoplasms/diagnosis , Solitary Fibrous Tumors/diagnosis
18.
FEBS Lett ; 591(19): 3119-3134, 2017 10.
Article in English | MEDLINE | ID: mdl-28649760

ABSTRACT

Immunometabolism focuses on the mechanisms regulating the impact of metabolism on lymphocyte activity and autoimmunity outbreak. The adipose tissue is long known to release adipokines, either pro- or anti-inflammatory factors bridging nutrition and immune function. More recently, adipocytes were discovered to also release extracellular vesicles (EVs) containing a plethora of biological molecules, including metabolites and microRNAs, which can regulate cell function/metabolism in distant tissues, suggesting that immune regulatory function by the adipose tissue may be far more complex than originally thought. Moreover, EVs were also identified as important mediators of immune cell-to-cell communication, adding a further microenvironmental mechanism of plasticity to fine-tune specific lymphocyte responses. This Review will first focus on the known mechanisms by which metabolism impacts immune function, presenting a systemic (nutrition and long-ranged adipokines) and a cellular point of view (metabolic pathway derangement in autoimmunity). It will then discuss the new discoveries concerning how EVs may act as nanometric vehicles integrating immune/metabolic responses at the level of the extracellular environment and affecting pathological processes.


Subject(s)
Autoimmune Diseases/metabolism , Extracellular Vesicles/metabolism , Metabolome , Humans , Models, Biological , Subcellular Fractions/metabolism
19.
Front Immunol ; 8: 443, 2017.
Article in English | MEDLINE | ID: mdl-28458672

ABSTRACT

Secreted phospholipases A2 (sPLA2s) are extracellular enzymes that catalyze the release of free fatty acids and lysophospholipids from membrane phospholipids and also bind to different receptors (e.g., PLA2R1 or integrins). To date, 12 mammalian sPLA2s have been identified, which play a critical role in pathophysiological processes including inflammation and cancer. sPLA2s activate immune cells such as human neutrophils (PMNs) by enzymatic activity- or receptor-mediated mechanisms. In addition, human PMNs synthesize and store human group V (hGV) and human group X (hGX) sPLA2s in their granules, but only the former is released upon cellular activation. We investigated the effects of sPLA2s on the release of proangiogenic and antiangiogenic factors by PMNs. We found that exogenous hGV and hGX sPLA2s induce the release of vascular endothelial growth factor (VEGF)-A, angiopoietin 1 (Ang1), and CXCL8/IL-8. Only hGV induces the secretion of the antiangiogenic isoform of VEGF-A, namely, VEGF-A165b. While the release of VEGF-A, Ang1, and CXCL8/IL-8 was likely mediated by hGV enzymatic activity and/or binding to PLA2R1 and heparan sulfate proteoglycans, the release of VEGF-A165b requires the interaction with αVß3 and α4ß1 integrins. We also provide evidence that endogenous hGV released by N-formyl-met-leu-phe (fMLF)-activated PMNs is involved in the release of angiogenic factors. The translational relevance of these data is supported by our findings that hGV expression is increased in human samples of lung cancer which are infiltrated by PMNs. Overall, our results suggest that the hGV-neutrophil axis may play a relevant role in the modulation of cancer-related inflammation and angiogenesis.

20.
BMC Infect Dis ; 16(1): 442, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27549342

ABSTRACT

BACKGROUND: The therapeutic HIV-1 Tat protein vaccine is in advanced clinical development. Tuberculosis, the main AIDS co-infection, is highly endemic in areas where AIDS prevention through vaccination is needed. However, safety and immunogenicity of Tat vaccination in the course of Mycobacterium tuberculosis (Mtb) infection is still unknown and it prevents the possibility to administer the vaccine to Mtb-infected individuals. We addressed the interplay and effects of Tat vaccination on Mtb infection in immunocompetent mice. METHODS: C57BL/6 mice were vaccinated or not with Bacillus Calmette-Guerin (BCG), the current tuberculosis vaccine, and after 5 weeks were infected with Mtb by intravenous route. The Tat protein was injected intradermally at 1, 2 and 4 weeks after Mtb challenge. Eight weeks after Mtb infection, all mice were sacrificed, and both the degree of pathology and immune responses to Mtb and Tat were evaluated. As additional control, some mice were either vaccinated or not with BCG, were not challenged with Mtb, but received the Tat protein. Statistical significances were evaluated by one-way or two-way ANOVA and Tukey's multiple comparisons post-test. RESULTS: In the lungs of Mtb-infected mice, Tat-vaccine did not favour Mtb replication and indeed reduced both area of cellular infiltration and protein levels of Interferon-γ, Chemokine (C-C motif) ligand-4 and Interleukin-1ß, pathological events triggered by Mtb-infection. Moreover, the protection against Mtb infection conferred by BCG remained good after Tat protein treatment. In spleen cells of Mtb-infected mice, Tat vaccination enhanced Mtb-specific Interferon-γ and Interleukin-17 responses, which may have a protective role. Of note, Mtb infection reduced, but did not suppress, the development of anti-Tat antibodies, required for Tat vaccine efficacy and the titer of anti-Tat IgG was potentiated by BCG vaccination in Mtb-free mice. In general, Tat treatment was well tolerated in both Mtb-infected and Mtb-free mice. CONCLUSIONS: Tat protein vaccine, administered in Mtb-infected mice with a protocol resembling that used in the clinical trials, was safe, immunogenic, limited the lung Mtb-associated immunopathology and did not abrogate the protective efficacy of BCG. These data provide preliminary evidence for a safe use of Tat vaccine in people vaccinated with BCG and/or suffering from tuberculosis.


Subject(s)
HIV-1/metabolism , Mycobacterium tuberculosis/pathogenicity , tat Gene Products, Human Immunodeficiency Virus/immunology , Animals , BCG Vaccine/immunology , Bacterial Load , Cells, Cultured , Chemokine CCL4/metabolism , Enzyme-Linked Immunosorbent Assay , Female , HIV Antibodies/blood , HIV-1/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spleen/cytology , Spleen/metabolism , Spleen/microbiology , Vaccination , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...