Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Cell Mol Life Sci ; 81(1): 288, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970689

ABSTRACT

Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.


Subject(s)
Light , Orexin Receptors , Orexins , Zebrafish , Orexin Receptors/metabolism , Orexin Receptors/chemistry , Animals , Orexins/metabolism , Humans , Locomotion/drug effects , Molecular Dynamics Simulation , Larva/metabolism , Larva/drug effects , HEK293 Cells , Ligands
2.
iScience ; 26(10): 107899, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766990

ABSTRACT

Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-ß-adaptin/ß-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP, demonstrating that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts. This is despite the ß-adaptin/ß-arrestin interaction not being conserved in yeast. Our data indicate that the AP2 α-adaptin is the functional target of activated TL2. We identified as interacting partners for the α-appendage, the Eps15 and epsin homologues Ede1 and Ent1. This demonstrates that endocytic cargo loading and sensing can be executed by conserved molecular interfaces, regardless of the proteins involved.

3.
Curr Issues Mol Biol ; 45(6): 4985-5004, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367066

ABSTRACT

Tumour suppressor p53 plays a key role in the development of cancer and has therefore been widely studied in recent decades. While it is well known that p53 is biologically active as a tetramer, the tetramerisation mechanism is still not completely understood. p53 is mutated in nearly 50% of cancers, and mutations can alter the oligomeric state of the protein, having an impact on the biological function of the protein and on cell fate decisions. Here, we describe the effects of a number of representative cancer-related mutations on tetramerisation domain (TD) oligomerisation defining a peptide length that permits having a folded and structured domain, thus avoiding the effect of the flanking regions and the net charges at the N- and C-terminus. These peptides have been studied under different experimental conditions. We have applied a variety of techniques, including circular dichroism (CD), native mass spectrometry (MS) and high-field solution NMR. Native MS allows us to detect the native state of complexes maintaining the peptide complexes intact in the gas phase; the secondary and quaternary structures were analysed in solution by NMR, and the oligomeric forms were assigned by diffusion NMR experiments. A significant destabilising effect and a variable monomer population were observed for all the mutants studied.

4.
J Med Chem ; 66(5): 3348-3355, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36808993

ABSTRACT

The relative success of platinum (Pt)-based chemotherapy comes at the cost of severe adverse side effects and is associated with a high risk of pro-oncogenic activation in the tumor microenvironment. Here, we report the synthesis of C-POC, a novel Pt(IV) cell-penetrating peptide conjugate showing a reduced impact against nonmalignant cells. In vitro and in vivo evaluation using patient-derived tumor organoids and laser ablation inductively coupled plasma mass spectrometry indicates that C-POC maintains robust anticancer efficacy while displaying diminished accumulation in healthy organs and reduced adverse toxicity compared to the standard Pt-based therapy. Likewise, C-POC uptake is significantly lowered in the noncancerous cells populating the tumor microenvironment. This results in the downregulation of versican, a biomarker of metastatic spreading and chemoresistance that we found upregulated in patients treated with standard Pt-based therapy. Altogether, our findings underscore the importance of considering the off-target impact of anticancer treatment on normal cells to improve drug development and patient care.


Subject(s)
Antineoplastic Agents , Platinum , Humans , Platinum/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Cell Line, Tumor
5.
Int J Nanomedicine ; 18: 8169-8185, 2023.
Article in English | MEDLINE | ID: mdl-38169997

ABSTRACT

Introduction: The development of new materials and tools for radiology is key to the implementation of this diagnostic technique in clinics. In this work, we evaluated the differential accumulation of peptide-functionalized GNRs in a transgenic animal model (APPswe/PSENd1E9) of Alzheimer's disease (AD) by computed tomography (CT) and measured the pharmacokinetic parameters and bioaccumulation of the nanosystem. Methods: The GNRs were functionalized with two peptides, Ang2 and D1, which conferred on them the properties of crossing the blood-brain barrier and binding to amyloid aggregates, respectively, thus making them a diagnostic tool with great potential for AD. The nanosystem was administered intravenously in APPswe/PSEN1dE9 model mice of 4-, 8- and 18-months of age, and the accumulation of gold nanoparticles was observed by computed tomography (CT). The gold accumulation and biodistribution were determined by atomic absorption. Results: Our findings indicated that 18-month-old animals treated with our nanosystem (GNR-D1/Ang2) displayed noticeable differences in CT signals compared to those treated with a control nanosystem (GNR-Ang2). However, no such distinctions were observed in younger animals. This suggests that our nanosystem holds the potential to effectively detect AD pathology. Discussion: These results support the future development of gold nanoparticle-based technology as a more effective and accessible alternative for the diagnosis of AD and represent a significant advance in the development of gold nanoparticle applications in disease diagnosis.


Subject(s)
Alzheimer Disease , Metal Nanoparticles , Nanotubes , Mice , Animals , Gold/chemistry , Bioaccumulation , Tissue Distribution , Metal Nanoparticles/chemistry , Peptides/chemistry , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid/metabolism , Tomography, X-Ray Computed , Nanotubes/chemistry , Tomography , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Disease Models, Animal , Brain/metabolism
6.
Med Oncol ; 39(12): 195, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071367

ABSTRACT

Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that is effective against the EGFR T790M mutation in patients with advanced non-small-cell lung cancer (NSCLC). However, acquired resistance appears invariably due to several mechanisms. The strategy of using EGF-targeted nanobodies (Nbs) to block the initial step of the EGFR pathway constitutes a new research area. Nbs offer several advantages compared to traditional mAbs, such as their reduced size, increased stability, and tissue penetration, which provide key advantages for targeting soluble tumoral growth factors. In this study we investigated the efficacy of anti-EGF Nbs to reduce Osimertinib resistance. Two anti-EGF Nbs, generated in our laboratory, were shown to inhibit cell viability and colony formation in PC9 and PC9-derived osimertinib-resistant cell lines. The combination of these Nbs with osimertinib improved the antitumor efficacy of this EGFR-TKI in cell viability and colony formation experiments. In a mechanistic study of the EGFR pathway, the combination treatment dampened the activation of downstream proteins such as Akt and Erk1/2 MAP kinases. In addition, it increased cellular apoptosis and decreased the expression of Hes1, a cancer stem cell marker involved in metastasis and osimertinib resistance. We conclude that the addition of anti-EGF nanobodies enhances the antitumor properties of osimertinib, thus representing a potentially effective strategy for NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Single-Domain Antibodies , Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Humans , Indoles , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Single-Domain Antibodies/genetics , Single-Domain Antibodies/pharmacology
7.
Pharmaceutics ; 14(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145622

ABSTRACT

The blood-brain barrier (BBB) limits the delivery of therapeutics to the brain but also represents the main gate for nutrient entrance. Targeting the natural transport mechanisms of the BBB offers an attractive route for brain drug delivery. Peptide shuttles are able to use these mechanisms to increase the transport of compounds that cannot cross the BBB unaided. As peptides are a group of biomolecules with unique physicochemical and structural properties, the field of peptide shuttles has substantially evolved in the last few years. In this review, we analyze the main classifications of BBB-peptide shuttles and the leading sources used to discover them.

8.
J Antimicrob Chemother ; 77(11): 3077-3085, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35972429

ABSTRACT

OBJECTIVES: Protegrins are a family of natural peptides from the innate immune system of vertebrates, with broad-spectrum antimicrobial activity. However, the toxicity and haemolysis of protegrin-1 (PG-1) at low concentrations renders it useless for therapeutic application. We rationally designed PLP-3, a novel synthetic PG-1-like peptide, comprising key activity features of protegrins in a constrained bicyclic structure. Our main objective was to investigate PLP-3's activity against MDR strains of Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae and to analyse its haemolysis and cytotoxicity. METHODS: Peptide synthesis was performed via solid phase and intramolecular ligation in solution, and the correct folding of the peptide was verified by circular dichroism. Antimicrobial activity was performed through broth microdilution. The test panel contained 45 bacterial strains belonging to A. baumannii, P. aeruginosa and K. pneumoniae (15 strains per species) comprising colistin-resistant and MDR strains. Cytotoxicity was assessed by XTT cell viability assays using HeLa and A549 cells and haemolysis of human erythrocytes. RESULTS: PLP-3 was successfully synthesized, and its antiparallel ß-sheet conformation was confirmed. Antimicrobial activity screening showed MIC90 values of 2 mg/L for A. baumannii, 16 mg/L for K. pneumoniae and 8 mg/L for P. aeruginosa. The haemolysis IC50 value was 48.53 mg/L. Cytotoxicity against human HeLa and A549 cells showed values of ca. 200 mg/L in both cell lines resulting in a 100-fold selectivity window for bacterial over human cells. CONCLUSIONS: PLP-3 has potent antimicrobial activity, especially against A. baumannii, while maintaining low haemolysis and toxicity against human cell lines at antimicrobial concentrations. These characteristics make PLP-3 a promising peptide with an interesting therapeutic window.


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Animals , Humans , Microbial Sensitivity Tests , Hemolysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Klebsiella pneumoniae , Pseudomonas aeruginosa , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial
9.
Chembiochem ; 23(12): e202200152, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35362647

ABSTRACT

We report a quantitative proteomics data analysis pipeline, which coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted, amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.


Subject(s)
Peptide Library , Proteomics , Combinatorial Chemistry Techniques/methods , Immune Checkpoint Inhibitors , Peptides/chemistry , Programmed Cell Death 1 Receptor , Proteins , Proteomics/methods
10.
Mater Sci Eng C Mater Biol Appl ; 131: 112512, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857291

ABSTRACT

The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.


Subject(s)
Metal Nanoparticles , Nanotubes , Glutathione , Gold , Methotrexate/pharmacology
11.
Pharmaceutics ; 13(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34452165

ABSTRACT

Gold nanoparticles (AuNPs) have been shown to be outstanding tools for drug delivery and biomedical applications, mainly owing to their colloidal stability, surface chemistry, and photothermal properties. The biocompatibility and stability of nanoparticles can be improved by capping the nanoparticles with endogenous proteins, such as albumin. Notably, protein coating of nanoparticles can interfere with and decrease their cell penetration. Therefore, in the present study, we functionalized albumin with the r8 peptide (All-D, octaarginine) and used it for coating NIR-plasmonic anisotropic gold nanoparticles. Gold nanoprisms (AuNPrs) and gold nanorods (AuNRs) were coated with bovine serum albumin (BSA) previously functionalized using a cell penetrating peptide (CPP) with the r8 sequence (BSA-r8). The effect of the coated and r8-functionalized AuNPs on HeLa cell viability was assessed by the MTS assay, showing a low effect on cell viability after BSA coating. Moreover, the internalization of the nanostructures into HeLa cells was assessed by confocal microscopy and transmission electron microscopy (TEM). As a result, both nanoconstructs showed an improved internalization level after being capped with BSA-r8, in contrast to the BSA-functionalized control, suggesting the predominant role of CPP functionalization in cell internalization. Thus, our results validate both novel nanoconstructs as potential candidates to be coated by endogenous proteins and functionalized with a CPP to optimize cell internalization. In a further approach, coating AuNPs with CPP-functionalized BSA can broaden the possibilities for biomedical applications by combining their optical properties, biocompatibility, and cell-penetration abilities.

12.
Chemistry ; 27(51): 12987-12991, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34227716

ABSTRACT

The introduction of a novel tetra-ortho-chloroazobenzene amino acid (CEBA) has enabled photoswitching of the antimicrobial activity of tyrocidine A analogues by using exclusively visible light, granting spatiotemporal control under benign conditions. Compounds bearing this photoswitchable amino acid become active upon irradiation with red light, but quickly turn-off upon exposure to other visible light wavelengths. Critically, sunlight quickly triggers isomerisation of the red light-activated compounds into their original trans form, offering an ideal platform for self-deactivation upon release into the environment. Linear analogues of tyrocidine A were found to provide the best photocontrol of their antimicrobial activity, leading to compounds active against Acinetobacter baumannii upon isomerisation. Exploration of their N- and C-termini has provided insights into key elements of their structure and has allowed obtaining new antimicrobials displaying excellent strain selectivity and photocontrol.


Subject(s)
Amino Acids , Photochemical Processes , Anti-Bacterial Agents/pharmacology , Azo Compounds , Light
13.
Chem Sci ; 12(14): 5164-5170, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-34163753

ABSTRACT

Peptides are a rapidly growing class of therapeutics with various advantages over traditional small molecules, especially for targeting difficult protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing bioactive cyclic topologies that go beyond natural l-amino acids. Here, we report a generalizable framework that exploits the computational power of Rosetta, in terms of large-scale backbone sampling, side-chain composition and energy scoring, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we developed two new inhibitors (PD-i3 and PD-i6) of programmed cell death 1 (PD-1), a key immune checkpoint in oncology. A comprehensive biophysical evaluation was performed to assess their binding to PD-1 as well as their blocking effect on the endogenous PD-1/PD-L1 interaction. Finally, NMR elucidation of their in-solution structures confirmed our de novo design approach.

14.
Biomater Sci ; 9(11): 4178-4190, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33982040

ABSTRACT

The development and use of nanosystems is an emerging strategy for the diagnosis and treatment of a broad number of diseases, such as Alzheimer's disease (AD). Here, we developed a neurotheranostic nanosystem based on gold nanorods (GNRs) that works as a therapeutic peptide delivery system and can be detected in vivo for microcomputed tomography (micro-CT), being a diagnostic tool. GNRs functionalized with the peptides Ang2 (a shuttle to the Central Nervous System) and D1 (that binds to the Aß peptide, also inhibiting its aggregation) allowed detecting differences in vivo between wild type and AD mice (APPswe/PSEN1dE9) 15 minutes after a single dose by micro-CT. Moreover, after a recurrent treatment for one month with GNRs-D1/Ang2, we observed a diminution of amyloid load and inflammatory markers in the brain. Thus, this new designed nanosystem exhibits promising properties for neurotheranostics of AD.


Subject(s)
Alzheimer Disease , Nanotubes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Gold , Mice , Mice, Transgenic , X-Ray Microtomography
15.
Front Microbiol ; 12: 634323, 2021.
Article in English | MEDLINE | ID: mdl-33643267

ABSTRACT

Previously, we identified that a cyclic hexapeptide AOA-2 inhibited the interaction of Gram-negative bacilli (GNB) like Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli to host cells thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model. In this work, we aimed to evaluate in vitro a library of AOA-2 derivatives in order to improve the effect of AOA-2 against GNB infections. Ten AOA-2 derivatives were synthetized for the in vitro assays. Their toxicities to human lung epithelial cells (A549 cells) for 24 h were evaluated by determining the A549 cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of these peptide derivatives and AOA-2 at 250, 125, 62.5, and 31.25 µg/mL on the attachment of A. baumannii ATCC 17978, P. aeruginosa PAO1 and E. coli ATCC 25922 strains to A549 cells was characterized by adherence and viability assays. None of the 10 derivatives showed toxicity to A549 cells. RW01 and RW06 have reduced more the adherence of ATCC 17978, PAO1 and ATCC 2599 strains to A549 cells when compared with the original compound AOA-2. Moreover, both peptides have increased slightly the viability of infected A549 cells by PAO1 and ATCC 25922 than those observed with AOA-2. Finally, RW01 and RW06 have potentiated the activity of colistin against ATCC 17978 strain in the same level with AOA-2. The optimization program of AOA-2 has generated two derivatives (RW01 and RW06) with best effect against interaction of GNB with host cells, specifically against P. aeruginosa and E. coli.

16.
Chemistry ; 27(14): 4670-4675, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33368712

ABSTRACT

Cytosolic protein delivery remains elusive. The inability of most proteins to cross the cellular membrane is a huge hurdle. Here we explore the unique photothermal properties of gold nanorods (AuNRs) to trigger cytosolic delivery of proteins. Both partners, protein and AuNRs, are modified with a protease-resistant cell-penetrating peptide with nuclear targeting properties to induce internalization. Once internalized, spatiotemporal control of protein release is achieved by near-infrared laser irradiation in the safe second biological window. Importantly, catalytic amounts of AuNRs are sufficient to trigger cytosolic protein delivery. To the best of our knowledge, this is the first time that AuNRs with their maximum of absorption in the second biological window are used to deliver proteins into the intracellular space. This strategy represents a powerful tool for the cytosolic delivery of virtually any class of protein.


Subject(s)
Metal Nanoparticles , Nanotubes , Cell Line, Tumor , Gold , Phototherapy
17.
Angew Chem Int Ed Engl ; 60(7): 3625-3631, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33103317

ABSTRACT

Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice.


Subject(s)
Adrenergic Agents/pharmacology , Chromogenic Compounds/pharmacology , Receptors, Adrenergic/metabolism , Adrenergic Agents/chemical synthesis , Adrenergic Agents/chemistry , Animals , Chromogenic Compounds/chemical synthesis , Chromogenic Compounds/chemistry , Ligands , Mice , Mice, Nude , Molecular Structure , Zebrafish
19.
Curr Top Med Chem ; 20(32): 2945-2958, 2020.
Article in English | MEDLINE | ID: mdl-33100204

ABSTRACT

The manipulation of an individual's genetic information to treat a disease has revolutionized the biomedicine field. Despite the promise of gene therapy, this treatment can have long-term sideeffects. Efforts in the field and recent discoveries have already led to several improvements, including efficient gene delivery and transfer, as well as inpatient safety. Several studies to treat a wide range of pathologies-such as cancer or monogenic diseases- are currently being conducted. Here we provide a broad overview of methodologies available for gene therapy, placing a strong emphasis on treatments for central nervous system diseases. Finally, we give a perspective on current delivery strategies to treat such diseases, with a special focus on systems that use peptides as delivery vectors.


Subject(s)
Brain Diseases/therapy , Brain Neoplasms/therapy , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Peptides/genetics , Humans
20.
Molecules ; 25(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707811

ABSTRACT

One-bead-one-compound peptide libraries, developed following the top-down experimental approach, have attracted great interest in the identification of potential ligands or active peptides. By exploiting a reverse experimental design approach based on the bottom-up strategy, we aimed to develop simplified, maximally diverse peptide libraries that resulted in the successful characterization of mixture components. We show that libraries of 32 and 48 components can be successfully detected in a single run using chromatography coupled to mass spectrometry (UPLC-MS). The proposed libraries were further theoretically evaluated in terms of their composition and physico-chemical properties. By combining the knowledge obtained on single libraries we can cover larger sequence spaces and provide a controlled exploration of the peptide chemical space both theoretically and experimentally. Designing libraries by using the bottom-up approach opens up the possibility of rationally fine-tuning the library complexity based on the available analytical methods.


Subject(s)
Amino Acids/chemistry , Peptide Library , Peptides/chemistry , Algorithms , Amino Acid Sequence , Chromatography, High Pressure Liquid , Combinatorial Chemistry Techniques , Microspheres , Solid-Phase Synthesis Techniques , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...