Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37141105

ABSTRACT

Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway regulates synaptic function and plasticity. Disruption of this pathway results in a loss of excitatory synapses and prevents structural plasticity during chemical long-term potentiation (cLTP). cLTP drives SNX17 recruitment to synapses, where its roles are in part mediated by regulating the surface expression of ß1-integrin. SNX17 recruitment relies on NMDAR activation, CaMKII signaling, and requires binding to the Retriever and PI(3)P. Together, these findings provide molecular insights into the regulation of SNX17 at synapses and define key roles for SNX17 in synaptic maintenance and in regulating enduring forms of synaptic plasticity.


Subject(s)
Long-Term Potentiation , Membrane Proteins , Neuronal Plasticity , Sorting Nexins , Cell Membrane/physiology , Membrane Proteins/physiology , Protein Transport , Synapses/physiology , Sorting Nexins/physiology , Cells, Cultured , Neurons/physiology
2.
Autophagy Rep ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-37064812

ABSTRACT

Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.

3.
Elife ; 112022 01 18.
Article in English | MEDLINE | ID: mdl-35040777

ABSTRACT

Cell surface receptors control how cells respond to their environment. Many cell surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH, and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces phosphatidylinositol 3-phosphate (PI3P), which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH, and CCC complexes on endosomes. Importantly, PIKfyve inhibition results in displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.


Subject(s)
Cell Membrane/metabolism , Endosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Animals , Cell Line , Cell Membrane/chemistry , Class III Phosphatidylinositol 3-Kinases/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice
4.
Theranostics ; 11(13): 6491-6506, 2021.
Article in English | MEDLINE | ID: mdl-33995670

ABSTRACT

Rationale: TGFß signaling pathway controls tissue fibrotic remodeling, a hallmark in many diseases leading to organ injury and failure. In this study, we address the role of Apilimod, a pharmacological inhibitor of the lipid kinase PIKfyve, in the regulation of cardiac pathological fibrotic remodeling and TGFß signaling pathway. Methods: The effects of Apilimod treatment on myocardial fibrosis, hypertrophy and cardiac function were assessed in vivo in a mouse model of pressure overload-induced heart failure. Primary cardiac fibroblasts and HeLa cells treated with Apilimod as well as genetic mutation of PIKfyve in mouse embryonic fibroblasts were used as cell models. Results: When administered in vivo, Apilimod reduced myocardial interstitial fibrosis development and prevented left ventricular dysfunction. In vitro, Apilimod controlled TGFß-dependent activation of primary murine cardiac fibroblasts. Mechanistically, both Apilimod and genetic mutation of PIKfyve induced TGFß receptor blockade in intracellular vesicles, negatively modulating its downstream signaling pathway and ultimately dampening TGFß response. Conclusions: Altogether, our findings propose a novel function for PIKfyve in the control of myocardial fibrotic remodeling and the TGFß signaling pathway, therefore opening the way to new therapeutic perspectives to prevent adverse fibrotic remodeling using Apilimod treatment.


Subject(s)
Heart Failure/drug therapy , Hydrazones/therapeutic use , Morpholines/therapeutic use , Phosphatidylinositol 3-Kinases/physiology , Pyrimidines/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta/physiology , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibrosis , HEK293 Cells , HeLa Cells , Heart Failure/pathology , Humans , Hydrazones/pharmacology , Male , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Myocardium/pathology , Pyrimidines/pharmacology , Rats , Receptor, Transforming Growth Factor-beta Type II/drug effects , Single-Blind Method , Ventricular Dysfunction, Left/prevention & control , Ventricular Remodeling/drug effects
5.
Methods Mol Biol ; 2251: 1-17, 2021.
Article in English | MEDLINE | ID: mdl-33481228

ABSTRACT

Phosphoinositide (PPI) lipids are a crucial class of low-abundance signaling molecules that regulate many processes within cells. Methods that enable simultaneous detection of all PPI lipid species provide a wholistic snapshot of the PPI profile of cells, which is critical for probing PPI biology. Here we describe a method for the simultaneous measurement of cellular PPI levels by metabolically labeling yeast or mammalian cells with myo-3H-inositol, extracting radiolabeled glycerophosphoinositides, and separating lipid species on an anion exchange column via HPLC.


Subject(s)
Isotope Labeling/methods , Phosphatidylinositol Phosphates/chemistry , Phosphatidylinositols/analysis , Animals , Biochemical Phenomena , Humans , Inositol/chemistry , Phosphatidylinositol 3-Kinases/analysis , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/analysis , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Radioisotopes/chemistry , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology
6.
Elife ; 62017 12 26.
Article in English | MEDLINE | ID: mdl-29256861

ABSTRACT

The discovery of the causative gene for Huntington's disease (HD) has promoted numerous efforts to uncover cellular pathways that lower levels of mutant huntingtin protein (mHtt) and potentially forestall the appearance of HD-related neurological defects. Using a cell-based model of pathogenic huntingtin expression, we identified a class of compounds that protect cells through selective inhibition of a lipid kinase, PIP4Kγ. Pharmacological inhibition or knock-down of PIP4Kγ modulates the equilibrium between phosphatidylinositide (PI) species within the cell and increases basal autophagy, reducing the total amount of mHtt protein in human patient fibroblasts and aggregates in neurons. In two Drosophila models of Huntington's disease, genetic knockdown of PIP4K ameliorated neuronal dysfunction and degeneration as assessed using motor performance and retinal degeneration assays respectively. Together, these results suggest that PIP4Kγ is a druggable target whose inhibition enhances productive autophagy and mHtt proteolysis, revealing a useful pharmacological point of intervention for the treatment of Huntington's disease, and potentially for other neurodegenerative disorders.


Subject(s)
Enzyme Inhibitors/metabolism , Huntingtin Protein/metabolism , Huntington Disease/prevention & control , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Autophagy , Cells, Cultured , Disease Models, Animal , Drosophila , Fibroblasts/physiology , Gene Knockdown Techniques , Humans , Mice , Models, Biological , Neurons/physiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Aggregation, Pathological , Proteolysis
7.
Oncotarget ; 6(4): 2064-75, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25576918

ABSTRACT

Amyloid precursor-like protein 2 (APLP2) is aberrantly expressed in pancreatic cancer. Here we showed that APLP2 is increased in pancreatic cancer metastases, particularly in metastatic lesions found in the diaphragm and intestine. Examination of matched human primary tumor-liver metastasis pairs showed that 38.1% of the patients had positive APLP2 expression in both the primary tumor and the corresponding liver metastasis. Stable knock-down of APLP2 expression (with inducible shRNA) in pancreatic cancer cells reduced the ability of these cells to migrate and invade. Loss of APLP2 decreased cortical actin and increased intracellular actin filaments in pancreatic cancer cells. Down-regulation of APLP2 decreased the weight and metastasis of orthotopically transplanted pancreatic tumors in nude mice.


Subject(s)
Actin Cytoskeleton/metabolism , Amyloid beta-Protein Precursor/metabolism , Cell Proliferation , Nerve Tissue Proteins/metabolism , Pancreatic Neoplasms/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Cell Movement , Down-Regulation/drug effects , Doxycycline/pharmacology , Female , Flow Cytometry , Humans , Immunoblotting , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Nude , Nerve Tissue Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA Interference , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
8.
Antioxid Redox Signal ; 20(13): 2059-73, 2014 May 01.
Article in English | MEDLINE | ID: mdl-23834433

ABSTRACT

SIGNIFICANCE: The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygenase domain. This mono-oxygenase domain generates redox potential with which MICALs can either oxidize proteins or produce reactive oxygen species (ROS). Actin is one such protein that is affected by MICAL function, leading to dramatic cytoskeletal rearrangements. This review describes the MICAL-family members, and discusses their mechanisms of actin-binding and regulation of actin cytoskeleton organization. RECENT ADVANCES: Recent studies show that MICALs directly induce oxidation of actin molecules, leading to actin depolymerization. ROS production by MICALs also causes oxidation of collapsin response mediator protein-2, a microtubule assembly promoter, which subsequently undergoes phosphorylation. CRITICAL ISSUES: MICAL proteins oxidize proteins through two mechanisms: either directly by oxidizing methionine residues or indirectly via the production of ROS. It remains unclear whether MICAL proteins employ both mechanisms or whether the activity of MICAL-family proteins might vary with different substrates. FUTURE DIRECTIONS: The identification of additional substrates oxidized by MICAL will shed new light on MICAL protein function. Additional directions include expanding studies toward the MICAL-like homologs that lack flavin adenine dinucleotide domains and oxidation activity.


Subject(s)
Actins/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Animals , Humans
9.
J Biol Chem ; 288(42): 30172-30180, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24019528

ABSTRACT

Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein.


Subject(s)
Adenosine Triphosphatases/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Endosomes/metabolism , Intracellular Membranes/metabolism , Nuclear Proteins/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Endosomes/chemistry , Endosomes/genetics , Endosomes/ultrastructure , HeLa Cells , Humans , Intracellular Membranes/chemistry , LIM Domain Proteins/chemistry , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Microfilament Proteins , Mixed Function Oxygenases , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
10.
Mol Biol Cell ; 24(11): 1776-90, S1-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23596323

ABSTRACT

Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Endosomes/metabolism , LIM Domain Proteins/metabolism , Phosphatidic Acids/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Binding Sites , Biological Transport , Cytoskeletal Proteins/genetics , Gene Expression , HeLa Cells , Humans , LIM Domain Proteins/genetics , Microfilament Proteins , Mixed Function Oxygenases , Protein Binding , Protein Structure, Tertiary , Signal Transduction , Vesicular Transport Proteins/genetics
11.
Commun Integr Biol ; 5(4): 384-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23060965

ABSTRACT

Various receptors navigate through the endocytic recycling compartment (ERC) on route to the plasma membrane. They are transported through recycling endosomes that emanate from the ERC that display distinct tubular morphology. A key question in the field is how the trafficking via these endosomes is regulated and how regulatory proteins such as Rab35, Rab8, Arf6 and EHD1 control this trafficking. Recent studies point to the protein MICAL-L1 as a major scaffold for these regulators. MICAL-L1 not only localizes to these tubular recycling endosomes and regulates trafficking, but it also controls the localization of EHD1 and Rab8 to these structures. It also connects its associated membranes to the motor proteins dynein and kinesin through its binding partner, CRMP2. Our recent study promotes MICAL-L1 as a Rab35 effector, where Rab35, both directly and indirectly through Arf6, controls the localization of MICAL-L1 and Rab8 to tubular membranes. We find that MICAL-L1 is a multi-tasking scaffold connecting various proteins to recycling endosomes for efficient trafficking.

12.
J Cell Sci ; 125(Pt 3): 614-24, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22331357

ABSTRACT

The Drosophila melanogaster MICAL protein is essential for the neuronal growth cone machinery that functions through plexin- and semaphorin-mediated axonal signaling. Drosophila MICAL is also involved in regulating myofilament organization and synaptic structures, and serves as an actin disassembly factor downstream of plexin-mediated axonal repulsion. In mammalian cells there are three known isoforms, MICAL1, MICAL2 and MICAL3, as well as the MICAL-like proteins MICAL-L1 and MICAL-L2, but little is known of their function, and information comes almost exclusively from neural cells. In this study we show that in non-neural cells human MICALs are required for normal actin organization, and all three MICALs regulate actin stress fibers. Moreover, we provide evidence that the generation of reactive oxygen species by MICAL proteins is crucial for their actin-regulatory function. However, although MICAL1 is auto-inhibited by its C-terminal coiled-coil region, MICAL2 remains constitutively active and affects stress fibers. These data suggest differential but complementary roles for MICAL1 and MICAL2 in actin microfilament regulation.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , LIM Domain Proteins/metabolism , Microfilament Proteins/metabolism , Oxidoreductases/metabolism , Actin Cytoskeleton/chemistry , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Axons/metabolism , Base Sequence , Cell Adhesion Molecules/metabolism , Cell Line , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , DNA Primers/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , LIM Domain Proteins/antagonists & inhibitors , LIM Domain Proteins/chemistry , LIM Domain Proteins/genetics , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Mixed Function Oxygenases , Nerve Tissue Proteins/metabolism , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Semaphorins/metabolism , Signal Transduction
13.
Traffic ; 13(1): 82-93, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21951725

ABSTRACT

Endocytosis is a conserved process across species in which cell surface receptors and lipids are internalized from the plasma membrane. Once internalized, receptors can either be degraded or be recycled back to the plasma membrane. A variety of small GTP-binding proteins regulate receptor recycling. Despite our familiarity with many of the key regulatory proteins involved in this process, our understanding of the mode by which these proteins co-operate and the sequential manner in which they function remains limited. In this study, we identify two GTP-binding proteins as interaction partners of the endocytic regulatory protein molecule interacting with casl-like protein 1 (MICAL)-L1. First, we demonstrate that Rab35 is a MICAL-L1-binding partner in vivo. Over-expression of active Rab35 impairs the recruitment of MICAL-L1 to tubular recycling endosomes, whereas Rab35 depletion promotes enhanced MICAL-L1 localization to these structures. Moreover, we demonstrate that Arf6 forms a complex with MICAL-L1 and plays a role in its recruitment to tubular endosomes. Overall, our data suggest a model in which Rab35 is a critical upstream regulator of MICAL-L1 and Arf6, while both MICAL-L1 and Arf6 regulate Rab8a function.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Endosomes/metabolism , Intracellular Membranes/metabolism , LIM Domain Proteins/metabolism , rab GTP-Binding Proteins/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Cell Culture Techniques , Cytoskeletal Proteins/genetics , Endocytosis , Endosomes/ultrastructure , HeLa Cells , Humans , Immunoprecipitation , Intracellular Membranes/ultrastructure , LIM Domain Proteins/genetics , Microfilament Proteins , Microscopy, Confocal , Mixed Function Oxygenases , Protein Transport , RNA Interference , Real-Time Polymerase Chain Reaction , Two-Hybrid System Techniques , rab GTP-Binding Proteins/genetics
14.
Commun Integr Biol ; 3(2): 181-3, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20585517

ABSTRACT

A key regulator of the slow recycling of receptors and lipids that occurs from the endocytic recycling compartment (ERC) back to the cell surface is EHD1. We have recently identified the Rab8a-interacting protein, MICAL-L1, as a novel binding partner for EHD1 that both recruits and interacts with EHD1 on tubular recycling endosomes. MICAL-L1 belongs to the MICALfamily of proteins that are highly expressed in neurons and involved in plexin-mediated repulsive axon guidance. Interestingly, MICAL-L1 contains a coiled coil region in its C-terminus that is both necessary and sufficient for its localization to the EHD1-containing long tubular membranes of the ERC. Furthermore, MICAL-L1-depletion also impaired recycling of both transferrin and integrin receptors from the ERC back to the plasma membrane. In conclusion, our studies implicate MICAL-L1 as a novel regulator of endocytic recycling, and raises the possibility that additional neuronal-expressed proteins may mediate endocytic events in non-neuronal cells.

15.
J Biol Chem ; 285(12): 8687-94, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20106972

ABSTRACT

Epidermal growth factor receptor tyrosine kinase substrate 15 (Eps15) homology (EH)-domain proteins can be divided into two classes: those with an N-terminal EH-domain(s), and the C-terminal Eps15 homology domain-containing proteins (EHDs). Whereas many N-terminal EH-domain proteins regulate internalization events, the best characterized C-terminal EHD, EHD1, regulates endocytic recycling. Because EH-domains interact with the tripeptide Asn-Pro-Phe (NPF), it is of critical importance to elucidate the molecular mechanisms that allow EHD1 and its paralogs to interact selectively with a subset of the hundreds of NPF-containing proteins expressed in mammalian cells. Here, we capitalize on our findings that C-terminal EH-domains possess highly positively charged interaction surfaces and that many NPF-containing proteins that interact with C-terminal (but not N-terminal) EH-domains are followed by acidic residues. Using the recently identified EHD1 interaction partner molecule interacting with CasL (MICAL)-Like 1 (MICAL-L1) as a model, we have demonstrated that only the first of its two NPF motifs is required for EHD1 binding. Because only this first NPF is followed by acidic residues, we have utilized glutathione S-transferase pulldowns, two-hybrid analysis, and NMR to demonstrate that the flanking acidic residues "fine tune" the binding affinity to EHD1. Indeed, our NMR solution structure of the EHD1 EH-domain in complex with the MICAL-L1 NPFEEEEED peptide indicates that the first two flanking Glu residues lie in a position favorable to form salt bridges with Lys residues within the EH-domain. Our data provide a novel explanation for the selective interaction of C-terminal EH-domains with specific NPF-containing proteins and allow for the prediction of new interaction partners with C-terminal EHDs.


Subject(s)
Asparagine/chemistry , Calcium-Binding Proteins/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Phenylalanine/chemistry , Phosphoproteins/chemistry , Proline/chemistry , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Glutathione Transferase/metabolism , Humans , Lysine/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae , Two-Hybrid System Techniques
16.
World J Biol Chem ; 1(8): 254-64, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-21537482

ABSTRACT

The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.

17.
Mol Biol Cell ; 20(24): 5181-94, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19864458

ABSTRACT

Endocytic recycling of receptors and lipids occurs via a complex network of tubular and vesicular membranes. EHD1 is a key regulator of endocytosis and associates with tubular membranes to facilitate recycling. Although EHD proteins tubulate membranes in vitro, EHD1 primarily associates with preexisting tubules in vivo. How EHD1 is recruited to these tubular endosomes remains unclear. We have determined that the Rab8-interacting protein, MICAL-L1, associates with EHD1, with both proteins colocalizing to long tubular membranes, in vitro and in live cells. MICAL-L1 is a largely uncharacterized member of the MICAL-family of proteins that uniquely contains two asparagine-proline-phenylalanine motifs, sequences that typically interact with EH-domains. Our data show that the MICAL-L1 C-terminal coiled-coil region is necessary and sufficient for its localization to tubular membranes. Moreover, we provide unexpected evidence that endogenous MICAL-L1 can link both EHD1 and Rab8a to these structures, as its depletion leads to loss of the EHD1-Rab8a interaction and the absence of both of these proteins from the membrane tubules. Finally, we demonstrate that MICAL-L1 is essential for efficient endocytic recycling. These data implicate MICAL-L1 as an unusual type of Rab effector that regulates endocytic recycling by recruiting and linking EHD1 and Rab8a on membrane tubules.


Subject(s)
Cytoskeletal Proteins/metabolism , Endocytosis , Endosomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Transferrin/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Motifs , Cytoskeletal Proteins/chemistry , HeLa Cells , Humans , Integrin beta1/metabolism , Intracellular Membranes/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , LIM Domain Proteins , Microfilament Proteins , Mixed Function Oxygenases , Models, Biological , Protein Binding , Protein Transport , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL