Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Alzheimers Dement ; 20(4): 2632-2652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375983

ABSTRACT

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid/metabolism , Brain/pathology , Amyloidogenic Proteins/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic
2.
Nucleic Acids Res ; 52(9): 5273-5284, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38348876

ABSTRACT

RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.


Subject(s)
Central Nervous System , RNA Interference , Animals , Humans , Male , Mice , Acetylgalactosamine/chemistry , Antagomirs/genetics , Antagomirs/metabolism , Apolipoproteins E/genetics , Central Nervous System/metabolism , Gene Silencing , Liver/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
3.
Sci Rep ; 14(1): 2061, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267530

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in HdhQ111/+ mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in HdhQ111/+ mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD.


Subject(s)
Corpus Striatum , Huntington Disease , Animals , Mice , Exons , Huntington Disease/genetics , RNA Interference , RNA, Messenger , RNA, Small Interfering/genetics
4.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292886

ABSTRACT

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3'- and 5'-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3'-exonuclease by ~32-fold over PS backbone and >1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.

5.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893269

ABSTRACT

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Subject(s)
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
6.
Nat Commun ; 13(1): 5802, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192390

ABSTRACT

Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington's disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential.


Subject(s)
Huntington Disease , Alleles , Animals , Chemical Engineering , Gene Silencing , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/therapy , Mice , Nerve Tissue Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
7.
Mol Ther Nucleic Acids ; 29: 116-132, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35795486

ABSTRACT

Effective systemic delivery of small interfering RNAs (siRNAs) to tissues other than liver remains a challenge. siRNAs are small (∼15 kDa) and therefore rapidly cleared by the kidneys, resulting in limited blood residence times and tissue exposure. Current strategies to improve the unfavorable pharmacokinetic (PK) properties of siRNAs rely on enhancing binding to serum proteins through extensive phosphorothioate modifications or by conjugation of targeting ligands. Here, we describe an alternative strategy for enhancing blood and tissue PK based on dynamic modulation of the overall size of the siRNA. We engineered a high-affinity universal oligonucleotide anchor conjugated to a high-molecular-weight moiety, which binds to the 3' end of the guide strand of an asymmetric siRNA. Data showed a strong correlation between the size of the PK-modifying anchor and clearance kinetics. Large 40-kDa PK-modifying anchors reduced renal clearance by ∼23-fold and improved tissue exposure area under the curve (AUC) by ∼26-fold, resulting in increased extrahepatic tissue retention (∼3- to 5-fold). Furthermore, PK-modifying oligonucleotide anchors allowed for straightforward and versatile modulation of blood residence times and biodistribution of a panel of chemically distinct ligands. The effects were more pronounced for conjugates with low lipophilicity (e.g., N-Acetylgalactosamine [GalNAc]), where significant improvement in uptake by hepatocytes and dose-dependent silencing in the liver was observed.

8.
Methods Mol Biol ; 2434: 345-353, 2022.
Article in English | MEDLINE | ID: mdl-35213030

ABSTRACT

Therapeutic oligonucleotides hold tremendous potential for treating central nervous system (CNS) disorders. The route of administration of oligonucleotides significantly impacts both distribution and silencing efficiency. Here, we describe a technically simple, clinically relevant method to administer oligonucleotide compounds into the CNS via direct intrathecal injections. This method achieves distribution throughout the CNS rapidly and permits high-throughput testing of oligonucleotide efficacy and potency in mammals.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Animals , Central Nervous System/metabolism , Gene Expression , Injections, Spinal/methods , Oligonucleotides/metabolism
9.
Nat Biotechnol ; 37(8): 884-894, 2019 08.
Article in English | MEDLINE | ID: mdl-31375812

ABSTRACT

Sustained silencing of gene expression throughout the brain using small interfering RNAs (siRNAs) has not been achieved. Here we describe an siRNA architecture, divalent siRNA (di-siRNA), that supports potent, sustained gene silencing in the central nervous system (CNS) of mice and nonhuman primates following a single injection into the cerebrospinal fluid. Di-siRNAs are composed of two fully chemically modified, phosphorothioate-containing siRNAs connected by a linker. In mice, di-siRNAs induced the potent silencing of huntingtin, the causative gene in Huntington's disease, reducing messenger RNA and protein throughout the brain. Silencing persisted for at least 6 months, with the degree of gene silencing correlating to levels of guide strand tissue accumulation. In cynomolgus macaques, a bolus injection of di-siRNA showed substantial distribution and robust silencing throughout the brain and spinal cord without detectable toxicity and with minimal off-target effects. This siRNA design may enable RNA interference-based gene silencing in the CNS for the treatment of neurological disorders.


Subject(s)
Central Nervous System/metabolism , Gene Expression Regulation/drug effects , Huntingtin Protein/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Animals , Huntingtin Protein/genetics , Mice , Mutation , RNA, Messenger , RNA, Small Interfering/metabolism
10.
iScience ; 16: 230-241, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31195240

ABSTRACT

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in serum-deprived conditions are enriched in six protein pathways and one lipid class, dilysocardiolipin. Inspired by these findings, we engineer an "artificial exosome," in which the incorporation of one lipid (dilysocardiolipin) and three proteins (Rab7, Desmoplakin, and AHSG) into conventional neutral liposomes produces vesicles that mimic cargo delivering activity of natural exosomes.

11.
Nucleic Acids Res ; 47(3): 1070-1081, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30535404

ABSTRACT

Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


Subject(s)
Lipids/chemistry , RNA, Small Interfering/pharmacokinetics , Animals , Blood Proteins/metabolism , Female , HeLa Cells , Hepatocytes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kidney/metabolism , Lipoproteins, LDL/metabolism , Mice , RNA Interference , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/chemistry , Receptors, LDL/metabolism , Tissue Distribution
12.
Nat Biotechnol ; 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451990

ABSTRACT

Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.

13.
Mol Ther ; 26(11): 2580-2591, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30143435

ABSTRACT

Effective transvascular delivery of therapeutic oligonucleotides to the brain presents a major hurdle to the development of gene silencing technologies for treatment of genetically defined neurological disorders. Distribution to the brain after systemic administrations is hampered by the low permeability of the blood-brain barrier (BBB) and the rapid clearance kinetics of these drugs from the blood. Here we show that transient osmotic disruption of the BBB enables transvascular delivery of hydrophobically modified small interfering RNA (hsiRNA) to the rat brain. Intracarotid administration of 25% mannitol and hsiRNA conjugated to phosphocholine-docosahexanoic acid (PC-DHA) resulted in broad ipsilateral distribution of PC-DHA-hsiRNAs in the brain. PC-DHA conjugation enables hsiRNA retention in the parenchyma proximal to the brain vasculature and enabled active internalization by neurons and astrocytes. Moreover, transvascular delivery of PC-DHA-hsiRNAs effected Htt mRNA silencing in the striatum (55%), hippocampus (51%), somatosensory cortex (52%), motor cortex (37%), and thalamus (33%) 1 week after administration. Aside from mild gliosis induced by osmotic disruption of the BBB, transvascular delivery of PC-DHA-hsiRNAs was not associated with neurotoxicity. Together, these findings provide proof-of-concept that temporary disruption of the BBB is an effective strategy for the delivery of therapeutic oligonucleotides to the brain.


Subject(s)
Blood-Brain Barrier/drug effects , Huntingtin Protein/genetics , Neurons/drug effects , RNA, Small Interfering/administration & dosage , Animals , Astrocytes/drug effects , Astrocytes/pathology , Blood-Brain Barrier/physiopathology , Brain/drug effects , Brain/physiopathology , Carotid Arteries/physiology , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/chemistry , Gene Silencing , Genetic Therapy/methods , Humans , Huntingtin Protein/antagonists & inhibitors , Hydrophobic and Hydrophilic Interactions , Mannitol/administration & dosage , Neurons/pathology , Phosphorylcholine/administration & dosage , Phosphorylcholine/chemistry , RNA, Small Interfering/chemistry , Rats
14.
Nucleic Acids Res ; 46(5): 2185-2196, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29432571

ABSTRACT

Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various tissues, independently of the nature of the conjugate or siRNA sequence, and support productive mRNA silencing. Thus, fully chemically stabilized siRNAs may provide a better platform to identify novel moieties (peptides, aptamers, small molecules) for targeted RNAi delivery.


Subject(s)
Drug Delivery Systems/methods , RNA Interference , RNA Processing, Post-Transcriptional , RNA, Small Interfering/genetics , Animals , Aptamers, Nucleotide/chemistry , Cells, Cultured , Female , Genetic Vectors/genetics , HeLa Cells , Humans , Lipids/chemistry , Mice, Inbred C57BL , Peptides/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , Tissue Distribution
15.
Nucleic Acid Ther ; 27(6): 323-334, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29022758

ABSTRACT

Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.


Subject(s)
High-Throughput Screening Assays/methods , Nucleic Acid Hybridization , Oligonucleotides/pharmacokinetics , RNA, Small Interfering/pharmacokinetics , Animals , Cholesterol/blood , Cholesterol/chemistry , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/chemistry , Female , Kidney/metabolism , Liver/metabolism , Mice , Mice, Inbred Strains , Oligonucleotides/administration & dosage , Oligonucleotides/blood , Peptide Nucleic Acids/analysis , Phosphorylcholine/blood , Phosphorylcholine/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/blood , Tissue Distribution
16.
Nucleic Acids Res ; 45(13): 7581-7592, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28591791

ABSTRACT

5΄-Vinylphosphonate modification of siRNAs protects them from phosphatases, and improves silencing activity. Here, we show that 5΄-vinylphosphonate confers novel properties to siRNAs. Specifically, 5΄-vinylphosphonate (i) increases siRNA accumulation in tissues, (ii) extends duration of silencing in multiple organs and (iii) protects siRNAs from 5΄-to-3΄ exonucleases. Delivery of conjugated siRNAs requires extensive chemical modifications to achieve stability in vivo. Because chemically modified siRNAs are poor substrates for phosphorylation by kinases, and 5΄-phosphate is required for loading into RNA-induced silencing complex, the synthetic addition of a 5΄-phosphate on a fully modified siRNA guide strand is expected to be beneficial. Here, we show that synthetic phosphorylation of fully modified cholesterol-conjugated siRNAs increases their potency and efficacy in vitro, but when delivered systemically to mice, the 5΄-phosphate is removed within 2 hours. The 5΄-phosphate mimic 5΄-(E)-vinylphosphonate stabilizes the 5΄ end of the guide strand by protecting it from phosphatases and 5΄-to-3΄ exonucleases. The improved stability increases guide strand accumulation and retention in tissues, which significantly enhances the efficacy of cholesterol-conjugated siRNAs and the duration of silencing in vivo. Moreover, we show that 5΄-(E)-vinylphosphonate stabilizes 5΄ phosphate, thereby enabling systemic delivery to and silencing in kidney and heart.


Subject(s)
Organophosphonates/pharmacology , RNA, Small Interfering/metabolism , Vinyl Compounds/pharmacology , Animals , Exoribonucleases/metabolism , Female , Gene Silencing , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Kidney/metabolism , Liver/metabolism , Mice , Models, Molecular , Nucleic Acid Conformation , Phosphorylation , RNA Stability/drug effects , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA-Induced Silencing Complex/chemistry , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Tissue Distribution
17.
Bioconjug Chem ; 28(6): 1758-1766, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28462988

ABSTRACT

Ligand-conjugated siRNAs have the potential to achieve targeted delivery and efficient silencing in neurons following local administration in the central nervous system (CNS). We recently described the activity and safety profile of a docosahexaenoic acid (DHA)-conjugated, hydrophobic siRNA (DHA-hsiRNA) targeting Huntingtin (Htt) mRNA in mouse brain. Here, we report the synthesis of an amide-modified, phosphocholine-containing DHA-hsiRNA conjugate (PC-DHA-hsiRNA), which closely resembles the endogenously esterified biological structure of DHA. We hypothesized that this modification may enhance neuronal delivery in vivo. We demonstrate that PC-DHA-hsiRNA silences Htt in mouse primary cortical neurons and astrocytes. After intrastriatal delivery, Htt-targeting PC-DHA-hsiRNA induces ∼80% mRNA silencing and 71% protein silencing after 1 week. However, PC-DHA-hsiRNA did not substantially outperform DHA-hsiRNA under the conditions tested. Moreover, at the highest locally administered dose (4 nmol, 50 µg), we observe evidence of PC-DHA-hsiRNA-mediated reactive astrogliosis. Lipophilic ligand conjugation enables siRNA delivery to neural tissues, but rational design of functional, nontoxic siRNA conjugates for CNS delivery remains challenging.


Subject(s)
Brain/metabolism , Drug Delivery Systems/methods , Parenchymal Tissue/metabolism , RNA, Small Interfering/chemical synthesis , Animals , Brain/pathology , Docosahexaenoic Acids/chemistry , Drug Stability , Gene Silencing , Huntingtin Protein/genetics , Mice , Phosphorylcholine/chemistry , RNA Interference , RNA, Messenger , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Serine/chemistry , Treatment Outcome
18.
Nucleic Acid Ther ; 26(2): 86-92, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26595721

ABSTRACT

Preclinical development of RNA interference (RNAi)-based therapeutics requires a rapid, accurate, and robust method of simultaneously quantifying mRNA knockdown in hundreds of samples. The most well-established method to achieve this is quantitative real-time polymerase chain reaction (qRT-PCR), a labor-intensive methodology that requires sample purification, which increases the potential to introduce additional bias. Here, we describe that the QuantiGene(®) branched DNA (bDNA) assay linked to a 96-well Qiagen TissueLyser II is a quick and reproducible alternative to qRT-PCR for quantitative analysis of mRNA expression in vivo directly from tissue biopsies. The bDNA assay is a high-throughput, plate-based, luminescence technique, capable of directly measuring mRNA levels from tissue lysates derived from various biological samples. We have performed a systematic evaluation of this technique for in vivo detection of RNAi-based silencing. We show that similar quality data is obtained from purified RNA and tissue lysates. In general, we observe low intra- and inter-animal variability (around 10% for control samples), and high intermediate precision. This allows minimization of sample size for evaluation of oligonucleotide efficacy in vivo.


Subject(s)
Gene Knockdown Techniques , RNA, Small Interfering/genetics , Animals , Gene Expression , Gene Silencing , High-Throughput Screening Assays , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/therapeutic use , Reproducibility of Results
19.
Mol Biosyst ; 11(10): 2635-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26135606

ABSTRACT

Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.


Subject(s)
Brain Neoplasms/therapy , RNAi Therapeutics/methods , Blood-Brain Barrier/metabolism , Brain Neoplasms/genetics , Drug Delivery Systems/methods , Genetic Vectors/administration & dosage , Humans
20.
Eur J Pharm Sci ; 71: 80-92, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25703259

ABSTRACT

In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281 ± 39.72 nm, a surface charge of 26.73 ± 3 mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer.


Subject(s)
Cyclodextrins/administration & dosage , Cyclodextrins/chemistry , Glycoproteins/administration & dosage , Glycoproteins/chemistry , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Viral Proteins/administration & dosage , Viral Proteins/chemistry , Cell Line, Tumor , Glioblastoma , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...