Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37471166

ABSTRACT

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.


Subject(s)
Actins , Skin Diseases , Humans , Skin/pathology , Acantholysis/genetics , Acantholysis/metabolism , Skin Diseases/complications , Skin Diseases/pathology
2.
Dev Cell ; 57(24): 2683-2698.e8, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36495876

ABSTRACT

Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.


Subject(s)
Desmoglein 1 , Epidermis , Humans , Cadherins/metabolism , Desmoglein 1/metabolism , Endosomes/metabolism , Epidermal Cells/metabolism , Epidermis/metabolism , Keratinocytes/metabolism
3.
Exp Dermatol ; 31(2): 214-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34379845

ABSTRACT

Acral peeling skin syndrome (APSS) is a heterogenous group of genodermatoses, manifested by peeling of palmo-plantar skin and occasionally associated with erythema and epidermal thickening. A subset of APSS is caused by mutations in protease inhibitor encoding genes, resulting in unopposed protease activity and desmosomal degradation and/or mis-localization, leading to enhanced epidermal desquamation. We investigated two Arab-Muslim siblings with mild keratoderma and prominent APSS since infancy. Genetic analysis disclosed a homozygous mutation in SERPINB7, c.796C > T, which is the founder mutation in Nagashima type palmo-plantar keratosis (NPPK). Although not previously formally reported, APSS was found in other patients with NPPK. We hypothesized that loss of SERPINB7 function might contribute to the peeling phenotype through impairment of keratinocyte adhesion, similar to other protease inhibitor mutations that cause APSS. Mis-localization of desmosomal components was observed in a patient plantar biopsy compared with a biopsy from an age- and gender-matched healthy control. Silencing of SERPINB7 in normal human epidermal keratinocytes led to increased cell sheet fragmentation upon mechanical stress. Immunostaining showed reduced expression of desmoglein 1 and desmocollin 1. This study shows that in addition to stratum corneum perturbation, loss of SERPINB7 disrupts desmosomal components, which could lead to desquamation, manifested by skin peeling.


Subject(s)
Keratoderma, Palmoplantar , Serpins , Atrophy , Homozygote , Humans , Keratinocytes/pathology , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/pathology , Serine Proteinase Inhibitors , Serpins/genetics , Skin Diseases/congenital
4.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34905516

ABSTRACT

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Subject(s)
Desmoglein 1/immunology , Desmosomes/immunology , Keratinocytes/immunology , Pemphigus/immunology , Th17 Cells/immunology , Animals , Desmoglein 1/genetics , Desmosomes/genetics , Mice , Pemphigus/genetics
5.
Mol Biol Cell ; 32(8): 753-768, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33596089

ABSTRACT

The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.


Subject(s)
Cell Adhesion/physiology , Desmocollins/metabolism , Animals , Cadherins/metabolism , Cell Line , Cell Membrane/metabolism , Desmocollins/genetics , Desmocollins/physiology , Desmoglein 2/metabolism , Desmosomal Cadherins/metabolism , Desmosomal Cadherins/physiology , Desmosomes/metabolism , Humans , Intercellular Junctions/metabolism , Intestinal Mucosa , Male , Mice , Mice, Knockout
6.
Curr Protoc Cell Biol ; 89(1): e115, 2020 12.
Article in English | MEDLINE | ID: mdl-33044803

ABSTRACT

Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.


Subject(s)
Biological Assay/methods , Cells/metabolism , Organ Specificity , Protein Interaction Mapping/methods , Protein Processing, Post-Translational , Animals , Antigens/metabolism , Formaldehyde , Humans , Imaging, Three-Dimensional , Paraffin Embedding , Tissue Fixation
7.
J Invest Dermatol ; 140(3): 556-567.e9, 2020 03.
Article in English | MEDLINE | ID: mdl-31465738

ABSTRACT

An effective epidermal barrier requires structural and functional integration of adherens junctions, tight junctions, gap junctions (GJ), and desmosomes. Desmosomes govern epidermal integrity while GJs facilitate small molecule transfer across cell membranes. Some patients with severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, caused by biallelic desmoglein 1 (DSG1) mutations, exhibit skin lesions reminiscent of erythrokeratodermia variabilis, caused by mutations in connexin (Cx) genes. We, therefore, examined whether SAM syndrome-causing DSG1 mutations interfere with Cx expression and GJ function. Lesional skin biopsies from SAM syndrome patients (n = 7) revealed decreased Dsg1 and Cx43 plasma membrane localization compared with control and nonlesional skin. Cultured keratinocytes and organotypic skin equivalents depleted of Dsg1 exhibited reduced Cx43 expression, rescued upon re-introduction of wild-type Dsg1, but not Dsg1 constructs modeling SAM syndrome-causing mutations. Ectopic Dsg1 expression increased cell-cell dye transfer, which Cx43 silencing inhibited, suggesting that Dsg1 promotes GJ function through Cx43. As GJA1 gene expression was not decreased upon Dsg1 loss, we hypothesized that Cx43 reduction was due to enhanced protein degradation. Supporting this, PKC-dependent Cx43 S368 phosphorylation, which signals Cx43 turnover, increased after Dsg1 depletion, while lysosomal inhibition restored Cx43 levels. These data reveal a role for Dsg1 in regulating epidermal Cx43 turnover.


Subject(s)
Connexin 43/metabolism , Dermatitis/genetics , Desmoglein 1/metabolism , Hypersensitivity/genetics , Skin/pathology , Wasting Syndrome/genetics , Adolescent , Adult , Biopsy , Cell Line , Child , Child, Preschool , Dermatitis/immunology , Dermatitis/pathology , Desmoglein 1/genetics , Female , Follow-Up Studies , Gap Junctions/metabolism , Gap Junctions/pathology , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Keratinocytes , Lysosomes/metabolism , Male , Mutation , Phosphorylation , Primary Cell Culture , Protein Kinase C/metabolism , Protein Stability , Proteolysis , Skin/immunology , Wasting Syndrome/immunology , Wasting Syndrome/pathology , Young Adult
8.
Mol Cancer Res ; 17(5): 1195-1206, 2019 05.
Article in English | MEDLINE | ID: mdl-30655320

ABSTRACT

Loss of the desmosomal cell-cell adhesion molecule, Desmoglein 1 (Dsg1), has been reported as an indicator of poor prognosis in head and neck squamous cell carcinomas (HNSCC) overexpressing epidermal growth factor receptor (EGFR). It has been well established that EGFR signaling promotes the formation of invadopodia, actin-based protrusions formed by cancer cells to facilitate invasion and metastasis, by activating pathways leading to actin polymerization and ultimately matrix degradation. We previously showed that Dsg1 downregulates EGFR/Erk signaling by interacting with the ErbB2-binding protein Erbin (ErbB2 Interacting Protein) to promote keratinocyte differentiation. Here, we provide evidence that restoring Dsg1 expression in cells derived from HNSCC suppresses invasion by decreasing the number of invadopodia and matrix degradation. Moreover, Dsg1 requires Erbin to downregulate EGFR/Erk signaling and to fully suppress invadopodia formation. Our findings indicate a novel role for Dsg1 in the regulation of invadopodia signaling and provide potential new targets for development of therapies to prevent invadopodia formation and therefore cancer invasion and metastasis. IMPLICATIONS: Our work exposes a new pathway by which a desmosomal cadherin called Dsg1, which is lost early in head and neck cancer progression, suppresses cancer cell invadopodia formation by scaffolding ErbB2 Interacting Protein and consequent attenuation of EGF/Erk signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/metabolism , Desmoglein 1/metabolism , Head and Neck Neoplasms/metabolism , Podosomes/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Desmoglein 1/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , MAP Kinase Signaling System , Neoplasm Invasiveness , Podosomes/genetics
9.
J Invest Dermatol ; 138(8): 1736-1743, 2018 08.
Article in English | MEDLINE | ID: mdl-29758285

ABSTRACT

Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring noninflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which cosegregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well as almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to colocalize with corneodesmosin that plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. The absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 downregulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of corneodesmosin levels by ectopic expression rescued cell-cell adhesion. Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers.


Subject(s)
Cell Adhesion/genetics , Dermatitis, Exfoliative/genetics , Epidermis/pathology , S100 Proteins/genetics , Skin Diseases, Genetic/genetics , Adult , Aged , Arabs/genetics , Biopsy , Cells, Cultured , Codon, Nonsense , Consanguinity , Dermatitis, Exfoliative/pathology , Epidermis/ultrastructure , Female , Filaggrin Proteins , Homozygote , Humans , Keratinocytes/pathology , Male , Microscopy, Electron , Primary Cell Culture , Skin Diseases, Genetic/pathology , Exome Sequencing
11.
Nat Commun ; 9(1): 1053, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535305

ABSTRACT

The epidermis is a multi-layered epithelium that serves as a barrier against water loss and environmental insults. Its morphogenesis occurs through a tightly regulated program of biochemical and architectural changes during which basal cells commit to differentiate and move towards the skin's surface. Here, we reveal an unexpected role for the vertebrate cadherin desmoglein 1 (Dsg1) in remodeling the actin cytoskeleton to promote the transit of basal cells into the suprabasal layer through a process of delamination, one mechanism of epidermal stratification. Actin remodeling requires the interaction of Dsg1 with the dynein light chain, Tctex-1 and the actin scaffolding protein, cortactin. We demonstrate that Tctex-1 ensures the correct membrane compartmentalization of Dsg1-containing desmosomes, allowing cortactin/Arp2/3-dependent perijunctional actin polymerization and decreasing tension at E-cadherin junctions to promote keratinocyte delamination. Moreover, Dsg1 is sufficient to enable simple epithelial cells to exit a monolayer to form a second layer, highlighting its morphogenetic potential.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cortactin/metabolism , Desmosomes/metabolism , Dyneins/metabolism , Keratinocytes/metabolism , Animals , Cells, Cultured , Desmoglein 1/metabolism , Dogs , Humans , Madin Darby Canine Kidney Cells , Protein Binding , RNA, Small Interfering , Two-Hybrid System Techniques
12.
Mol Biol Cell ; 28(23): 3156-3164, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28495795

ABSTRACT

The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome-intermediate filament (DSM-IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM-IF interaction increases cell-substrate and cell-cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM-IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems.


Subject(s)
Desmoplakins/metabolism , Desmoplakins/physiology , Intermediate Filaments/metabolism , Actin Cytoskeleton/metabolism , Adherens Junctions/metabolism , Biomechanical Phenomena/physiology , Cadherins/metabolism , Cell Adhesion/physiology , Cytoskeleton/metabolism , Desmosomes/metabolism , Humans , Intermediate Filaments/physiology
13.
J Allergy Clin Immunol ; 136(5): 1268-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26073755

ABSTRACT

BACKGROUND: Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. OBJECTIVE: We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. METHODS: Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. RESULTS: No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. CONCLUSIONS: SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.


Subject(s)
Dermatitis/genetics , Desmoplakins/genetics , Hypersensitivity/genetics , Mutation, Missense/genetics , Wasting Syndrome/genetics , Child , Child, Preschool , DNA Mutational Analysis , Dermatitis/diagnosis , Desmoglein 1/genetics , Disease Progression , Humans , Hypersensitivity/diagnosis , Infant , Infant, Newborn , Male , Pedigree , Protein Structure, Tertiary/genetics , Skin/pathology , Wasting Syndrome/diagnosis
14.
Mol Biol Cell ; 25(23): 3749-64, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25208567

ABSTRACT

The pathways driving desmosome and adherens junction assembly are temporally and spatially coordinated, but how they are functionally coupled is poorly understood. Here we show that the Armadillo protein plakophilin 3 (Pkp3) mediates both desmosome assembly and E-cadherin maturation through Rap1 GTPase, thus functioning in a manner distinct from the closely related plakophilin 2 (Pkp2). Whereas Pkp2 and Pkp3 share the ability to mediate the initial phase of desmoplakin (DP) accumulation at sites of cell-cell contact, they play distinct roles in later steps: Pkp3 is required for assembly of a cytoplasmic population of DP-enriched junction precursors, whereas Pkp2 is required for transfer of the precursors to the membrane. Moreover, Pkp3 forms a complex with Rap1 GTPase, promoting its activation and facilitating desmosome assembly. We show further that Pkp3 deficiency causes disruption of an E-cadherin/Rap1 complex required for adherens junction sealing. These findings reveal Pkp3 as a coordinator of desmosome and adherens junction assembly and maturation through its functional association with Rap1.


Subject(s)
Desmosomes/metabolism , Plakophilins/genetics , rap1 GTP-Binding Proteins/genetics , Adherens Junctions/genetics , Adherens Junctions/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion/genetics , Cell Line , Desmoplakins/metabolism , Humans , Plakophilins/metabolism
15.
J Invest Dermatol ; 134(1): 112-122, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23884246

ABSTRACT

Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell-cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ≈ 30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ≈ 2 × larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, ß4 and ß1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing ß1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of ß1 integrin and RhoA in integrating cell-cell and cell-substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis.


Subject(s)
Cell Movement/physiology , Focal Adhesions/physiology , Integrin beta1/genetics , Integrin beta4/genetics , Keratinocytes/physiology , Plakophilins/metabolism , Cell Line , Desmosomes/physiology , Epithelial Cells/cytology , Epithelial Cells/physiology , Humans , Integrin beta1/metabolism , Integrin beta4/metabolism , Keratinocytes/cytology , Plakophilins/genetics , Signal Transduction/physiology , Wound Healing/physiology , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
17.
J Invest Dermatol ; 133(2): 578-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22931915
18.
J Cell Biol ; 199(4): 699-711, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-23128240

ABSTRACT

Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail-tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.


Subject(s)
Desmoglein 2/chemistry , Desmoglein 2/metabolism , Cell Adhesion , Desmoglein 2/genetics , Humans , Mutation , Surface Properties , Tumor Cells, Cultured
19.
Mol Biol Cell ; 21(16): 2844-59, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20554761

ABSTRACT

Plakophilin 2 (PKP2), an armadillo family member closely related to p120 catenin (p120ctn), is a constituent of the intercellular adhesive junction, the desmosome. We previously showed that PKP2 loss prevents the incorporation of desmosome precursors enriched in the plaque protein desmoplakin (DP) into newly forming desmosomes, in part by disrupting PKC-dependent regulation of DP assembly competence. On the basis of the observation that DP incorporation into junctions is cytochalasin D-sensitive, here we ask whether PKP2 may also contribute to actin-dependent regulation of desmosome assembly. We demonstrate that PKP2 knockdown impairs cortical actin remodeling after cadherin ligation, without affecting p120ctn expression or localization. Our data suggest that these defects result from the failure of activated RhoA to localize at intercellular interfaces after cell-cell contact and an elevation of cellular RhoA, stress fibers, and other indicators of contractile signaling in squamous cell lines and atrial cardiomyocytes. Consistent with these observations, RhoA activation accelerated DP redistribution to desmosomes during the first hour of junction assembly, whereas sustained RhoA activity compromised desmosome plaque maturation. Together with our previous findings, these data suggest that PKP2 may functionally link RhoA- and PKC-dependent pathways to drive actin reorganization and regulate DP-IF interactions required for normal desmosome assembly.


Subject(s)
Actomyosin/metabolism , Desmosomes/metabolism , Plakophilins/metabolism , rhoA GTP-Binding Protein/metabolism , Actins/metabolism , Animals , Cadherins/metabolism , Catenins/metabolism , Cell Communication , Cell Line , Cell Line, Tumor , Cytoskeleton/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Intercellular Junctions/metabolism , Microscopy, Fluorescence , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myosin Light Chains/metabolism , Plakophilins/genetics , Protein Binding , Protein Kinase C/metabolism , RNA Interference , Signal Transduction , Delta Catenin
20.
Curr Opin Cell Biol ; 21(5): 708-16, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19674883

ABSTRACT

Armadillo family proteins known as plakophilins have been characterized as structural components of desmosomes that stabilize and strengthen adhesion by enhancing attachments with the intermediate filament cytoskeleton. However, plakophilins and their close relatives are emerging as versatile scaffolds for multiple signaling and metabolic processes that not only facilitate junction dynamics but also more globally regulate diverse cellular activities. While perturbation of plakophilin functions contribute to inherited diseases and cancer pathogenesis, the functional significance of the multiple PKP isoforms and the mechanisms by which their behaviors are regulated remain to be elucidated.


Subject(s)
Plakophilins/metabolism , Signal Transduction , Animals , Cell Adhesion , Disease Susceptibility/metabolism , Humans , Neoplasms/metabolism , Plakophilins/chemistry , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...