Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38564707

ABSTRACT

Activating point mutations in the MET tyrosine kinase domain (TKD) are oncogenic in a subset of papillary renal cell carcinomas (PRCC). Here, using comprehensive genomic profiling among >600,000 patients, we identify activating MET TKD point mutations as putative oncogenic driver across diverse cancers, with a frequency of ~0.5%. The most common mutations in the MET TKD defined as oncogenic or likely oncogenic according to OncoKB resulted in amino acid substitutions at positions H1094, L1195, F1200, D1228, Y1230, M1250, and others. Preclinical modeling of these alterations confirmed their oncogenic potential, and also demonstrated differential patterns of sensitivity to type I and type II MET inhibitors. Two patients with metastatic lung adenocarcinoma harboring MET TKD mutations (H1094Y, F1200I) and no other known oncogenic drivers achieved confirmed partial responses to a type I MET inhibitor. Activating MET TKD mutations occur in multiple malignancies and may confer clinical sensitivity to currently available MET inhibitors.

2.
Front Oncol ; 11: 766298, 2021.
Article in English | MEDLINE | ID: mdl-34900714

ABSTRACT

Oncoprotein expression is controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex. eIF4A, a component of eIF4F, catalyzes the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA to facilitate ribosome scanning and translation initiation. Zotatifin (eFT226) is a selective eIF4A inhibitor that increases the affinity between eIF4A and specific polypurine sequence motifs and has been reported to inhibit translation of driver oncogenes in models of lymphoma. Here we report the identification of zotatifin binding motifs in the 5'-UTRs of HER2 and FGFR1/2 Receptor Tyrosine Kinases (RTKs). Dysregulation of HER2 or FGFR1/2 in human cancers leads to activation of the PI3K/AKT and RAS/ERK signaling pathways, thus enhancing eIF4A activity and promoting the translation of select oncogenes that are required for tumor cell growth and survival. In solid tumor models driven by alterations in HER2 or FGFR1/2, downregulation of oncoprotein expression by zotatifin induces sustained pathway-dependent anti-tumor activity resulting in potent inhibition of cell proliferation, induction of apoptosis, and significant in vivo tumor growth inhibition or regression. Sensitivity of RTK-driven tumor models to zotatifin correlated with high basal levels of mTOR activity and elevated translational capacity highlighting the unique circuitry generated by the RTK-driven signaling pathway. This dependency identifies the potential for rational combination strategies aimed at vertical inhibition of the PI3K/AKT/eIF4F pathway. Combination of zotatifin with PI3K or AKT inhibitors was beneficial across RTK-driven cancer models by blocking RTK-driven resistance mechanisms demonstrating the clinical potential of these combination strategies.

3.
J Med Chem ; 61(8): 3516-3540, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29526098

ABSTRACT

Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.


Subject(s)
Antineoplastic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/therapeutic use , Pyridones/therapeutic use , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Drug Design , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridones/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Serine/chemistry , Signal Transduction/drug effects , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Xenograft Model Antitumor Assays
4.
PLoS One ; 9(5): e96565, 2014.
Article in English | MEDLINE | ID: mdl-24794217

ABSTRACT

OBJECTIVE: The immune response to pancreatic ductal adenocarcinoma (PDA) may play a role in defining its uniquely aggressive biology; therefore, we sought to clearly define the adaptive immune infiltrate in PDA. DESIGN: We used immunohistochemistry and flow cytometry to characterize the immune infiltrate in human PDA and compared our findings to the patients' peripheral blood. RESULTS: In contrast to the myeloid cell predominant infiltrate seen in murine models, T cells comprised the majority of the hematopoietic cell component of the tumor stroma in human PDA. Most intratumoral CD8+ T cells exhibited an antigen-experienced effector memory cell phenotype and were capable of producing IFN-γ. CD4+ regulatory T cells (Treg) and IL-17 producing T helper cells were significantly more prevalent in tumor than in blood. Consistent with the association with reduced survival in previous studies, we observed higher frequencies of both myeloid cells and Treg in poorly differentiated tumors. The majority of intratumoral T cells expressed the co-inhibitory receptor programmed death-1 (PD-1), suggesting one potential mechanism through which PDA may evade antitumor immunity. Successful multimodal neoadjuvant therapy altered the immunoregulatory balance and was associated with reduced infiltration of both myeloid cells and Treg. CONCLUSION: Our data show that human PDA contains a complex mixture of inflammatory and regulatory immune cells, and that neoadjuvant therapy attenuates the infiltration of intratumoral cells associated with immunosuppression and worsened survival.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Neoadjuvant Therapy/methods , Pancreas/pathology , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/pathology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Male , Middle Aged , Pancreas/drug effects , Pancreas/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/drug effects
5.
Cancer Cell ; 21(3): 418-29, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22439937

ABSTRACT

Pancreatic ductal adenocarcinomas (PDAs) are characterized by a robust fibroinflammatory response. We show here that this desmoplastic reaction generates inordinately high interstitial fluid pressures (IFPs), exceeding those previously measured or theorized for solid tumors, and induces vascular collapse, while presenting substantial barriers to perfusion, diffusion, and convection of small molecule therapeutics. We identify hyaluronan, or hyaluronic acid (HA), as the primary matrix determinant of these barriers and show that systemic administration of an enzymatic agent can ablate stromal HA from autochthonous murine PDA, normalize IFP, and re-expand the microvasculature. In combination with the standard chemotherapeutic, gemcitabine, the treatment permanently remodels the tumor microenvironment and consistently achieves objective tumor responses, resulting in a near doubling of overall survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Hyaluronic Acid/physiology , Pancreatic Neoplasms/drug therapy , Polyethylene Glycols/therapeutic use , Adenocarcinoma/blood supply , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Animals, Genetically Modified , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Pancreatic Ductal/blood supply , Carcinoma, Pancreatic Ductal/pathology , Cell Adhesion Molecules/administration & dosage , Cell Adhesion Molecules/therapeutic use , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Evaluation, Preclinical , Extracellular Fluid/drug effects , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/administration & dosage , Hyaluronoglucosaminidase/pharmacology , Hyaluronoglucosaminidase/therapeutic use , Mice , Microvessels/drug effects , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/pathology , Polyethylene Glycols/administration & dosage , Stromal Cells/drug effects , Stromal Cells/pathology , Tumor Microenvironment/drug effects , Gemcitabine
6.
J Invest Dermatol ; 126(1): 154-60, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16417231

ABSTRACT

Frequent somatic mutation of v-raf murine sarcoma viral oncogene homolog B (BRAF), a downstream effector of the rat sarcoma oncogene (RAS) signaling pathway, is described in melanoma and other tumors. Our analysis of melanoma cell lines suggests that activating mutations in BRAF can occur simultaneously with inactivation of phosphatase and tensin homolog (PTEN), but neuroblastoma RAS (NRAS) mutations are not coincident. We determined the concurrent prevalence of mutations in BRAF and NRAS, and alteration of PTEN expression in 69 primary cutaneous melanomas. BRAF mutations were seen in 57% of cases. NRAS was mutated in 17% of samples, exclusively in exon 2. Two cases showed concurrent BRAF and NRAS mutations. Using immunohistochemistry, PTEN protein expression was lost or greatly reduced in 19% of tumors. Seven tumors with reduced PTEN yielded DNA amenable to sequencing, and three also showed mutation in BRAF but none in NRAS. In all, 11 (85%) of 13 tumors showing reduced PTEN expression were greater than 3.5 mm thick, and the association of increasing Breslow thickness and loss or reduction of PTEN expression was statistically significant (P<0.0001). Mutations in NRAS were not coincident with reduced PTEN expression, and the concurrent mutation of NRAS and BRAF was rare.


Subject(s)
Genes, ras/genetics , Melanoma/genetics , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Humans , Male , Melanoma/chemistry , Melanoma/pathology , Middle Aged , Mutation , PTEN Phosphohydrolase/analysis , Skin Neoplasms/chemistry , Skin Neoplasms/pathology
7.
Proc Natl Acad Sci U S A ; 100(9): 5164-9, 2003 Apr 29.
Article in English | MEDLINE | ID: mdl-12692305

ABSTRACT

We report the molecular identification of a sialic acid-independent host-parasite interaction in the Plasmodium falciparum malaria parasite invasion of RBCs. Two nonglycosylated exofacial regions of human band 3 in the RBC membrane were identified as a crucial host receptor binding the C-terminal processing products of merozoite surface protein 1 (MSP1). Peptides derived from the receptor region of band 3 inhibited the invasion of RBCs by P. falciparum. A major segment of the band 3 receptor (5ABC) bound to native MSP1(42) and blocked the interaction of native MSP1(42) with intact RBCs in vitro. Recombinant MSP1(19) (the C-terminal domain of MSP1(42)) bound to 5ABC as well as RBCs. The binding of both native MSP1(42) and recombinant MSP1(19) was not affected by the neuraminidase treatment of RBCs, but sensitive to chymotrypsin treatment. In addition, recombinant MSP1(38) showed similar interactions with the band 3 receptor and RBCs, although the interaction was relatively weak. These findings suggest that the chymotrypsin-sensitive MSP1-band 3 interaction plays a role in a sialic acid-independent invasion pathway and reveal the function of MSP1 in the Plasmodium invasion of RBCs.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes/parasitology , Merozoite Surface Protein 1/metabolism , Plasmodium falciparum/physiology , Animals , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique, Indirect , Humans , Molecular Sequence Data , N-Acetylneuraminic Acid/metabolism , Protein Binding , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...