Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 17: 1209398, 2023.
Article in English | MEDLINE | ID: mdl-37928727

ABSTRACT

Enjoying music consistently engages key structures of the neural auditory and reward systems such as the right superior temporal gyrus (R STG) and ventral striatum (VS). Expectations seem to play a central role in this effect, as preferences reliably vary according to listeners' uncertainty about the musical future and surprise about the musical past. Accordingly, VS activity reflects the pleasure of musical surprise, and exhibits stronger correlations with R STG activity as pleasure grows. Yet the reward value of musical surprise - and thus the reason for these surprises engaging the reward system - remains an open question. Recent models of predictive neural processing and learning suggest that forming, testing, and updating hypotheses about one's environment may be intrinsically rewarding, and that the constantly evolving structure of musical patterns could provide ample opportunity for this procedure. Consistent with these accounts, our group previously found that listeners tend to prefer melodic excerpts taken from real music when it either validates their uncertain melodic predictions (i.e., is high in uncertainty and low in surprise) or when it challenges their highly confident ones (i.e., is low in uncertainty and high in surprise). An independent research group (Cheung et al., 2019) replicated these results with musical chord sequences, and identified their fMRI correlates in the STG, amygdala, and hippocampus but not the VS, raising new questions about the neural mechanisms of musical pleasure that the present study seeks to address. Here, we assessed concurrent liking ratings and hemodynamic fMRI signals as 24 participants listened to 50 naturalistic, real-world musical excerpts that varied across wide spectra of computationally modeled uncertainty and surprise. As in previous studies, liking ratings exhibited an interaction between uncertainty and surprise, with the strongest preferences for high uncertainty/low surprise and low uncertainty/high surprise. FMRI results also replicated previous findings, with music liking effects in the R STG and VS. Furthermore, we identify interactions between uncertainty and surprise on the one hand, and liking and surprise on the other, in VS activity. Altogether, these results provide important support for the hypothesized role of the VS in deriving pleasure from learning about musical structure.

2.
Front Psychol ; 14: 1175682, 2023.
Article in English | MEDLINE | ID: mdl-38034280

ABSTRACT

Predictability plays an important role in the experience of musical pleasure. By leveraging expectations, music induces pleasure through tension and surprise. However, musical predictions draw on both prior knowledge and immediate context. Similarly, musical pleasure, which has been shown to depend on predictability, may also vary relative to the individual and context. Although research has demonstrated the influence of both long-term knowledge and stimulus features in influencing expectations, it is unclear how perceptions of a melody are influenced by comparisons to other music pieces heard in the same context. To examine the effects of context we compared how listeners' judgments of two distinct sets of stimuli differed when they were presented alone or in combination. Stimuli were excerpts from a repertoire of Western music and a set of experimenter created melodies. Separate groups of participants rated liking and predictability for each set of stimuli alone and in combination. We found that when heard together, the Repertoire stimuli were more liked and rated as less predictable than if they were heard alone, with the opposite pattern being observed for the Experimental stimuli. This effect was driven by a change in ratings between the Alone and Combined conditions for each stimulus set. These findings demonstrate a context-based shift of predictability ratings and derived pleasure, suggesting that judgments stem not only from the physical properties of the stimulus, but also vary relative to other options available in the immediate context.

3.
Neuroimage ; 267: 119818, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36535323

ABSTRACT

The human brain exhibits rich dynamics that reflect ongoing functional states. Patterns in fMRI data, detected in a data-driven manner, have uncovered recurring configurations that relate to individual and group differences in behavioral, cognitive, and clinical traits. However, resolving the neural and physiological processes that underlie such measurements is challenging, particularly without external measurements of brain state. A growing body of work points to underlying changes in vigilance as one driver of time-windowed fMRI connectivity states, calculated on the order of tens of seconds. Here we examine the degree to which the low-dimensional spatial structure of instantaneous fMRI activity is associated with vigilance levels, by testing whether vigilance-state detection can be carried out in an unsupervised manner based on individual BOLD time frames. To investigate this question, we first reduce the spatial dimensionality of fMRI data, and apply Gaussian Mixture Modeling to cluster the resulting low-dimensional data without any a priori vigilance information. Our analysis includes long-duration task and resting-state scans that are conducive to shifts in vigilance. We observe a close alignment between low-dimensional fMRI states (data-driven clusters) and measurements of vigilance derived from concurrent electroencephalography (EEG) and behavior. Whole-brain coactivation analysis revealed cortical anti-correlation patterns that resided primarily during higher behavioral- and EEG-defined levels of vigilance, while cortical activity was more often spatially uniform in states corresponding to lower vigilance. Overall, these findings indicate that vigilance states may be detected in the low-dimensional structure of fMRI data, even within individual time frames.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Wakefulness , Brain/physiology , Electroencephalography/methods
4.
Cereb Cortex ; 31(10): 4450-4463, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33903915

ABSTRACT

The complexity and variability of human brain activity, such as quantified from Functional Magnetic Resonance Imaging (fMRI) time series, have been widely studied as potential markers of healthy and pathological states. However, the extent to which fMRI temporal features exhibit stable markers of inter-individual differences in brain function across healthy young adults is currently an open question. In this study, we draw upon two widely used time-series measures-a nonlinear complexity measure (sample entropy; SampEn) and a spectral measure of low-frequency content (fALFF)-to capture dynamic properties of resting-state fMRI in a large sample of young adults from the Human Connectome Project. We observe that these two measures are closely related, and that both generate reproducible patterns across brain regions over four different fMRI runs, with intra-class correlations of up to 0.8. Moreover, we find that both metrics can uniquely differentiate subjects with high identification rates (ca. 89%). Canonical correlation analysis revealed a significant relationship between multivariate brain temporal features and behavioral measures. Overall, these findings suggest that regional profiles of fMRI temporal characteristics may provide stable markers of individual differences, and motivate future studies to further probe relationships between fMRI time series metrics and behavior.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Behavior/physiology , Brain/physiology , Brain Mapping , Cognition , Connectome , Female , Humans , Image Processing, Computer-Assisted , Individuality , Male , Neuropsychological Tests , Nonlinear Dynamics , Rest , Young Adult
5.
Neuroscience ; 441: 102-116, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32569807

ABSTRACT

Human behavior is inherently multimodal and relies on sensorimotor integration. This is evident when pianists exhibit activity in motor and premotor cortices, as part of a dorsal pathway, while listening to a familiar piece of music, or when naïve participants learn to play simple patterns on the piano. Here we investigated the interaction between multimodal learning and dorsal-stream activity over the course of four weeks in ten skilled pianists by adopting a naturalistic data-driven analysis approach. We presented the pianists with audio-only, video-only and audiovisual recordings of a piano sonata during functional magnetic resonance imaging (fMRI) before and after they had learned to play the sonata by heart for a total of four weeks. We followed the learning process and its outcome with questionnaires administered to the pianists, one piano instructor following their training, and seven external expert judges. The similarity of the pianists' brain activity during stimulus presentations was examined before and after learning by means of inter-subject correlation (ISC) analysis. After learning, an increased ISC was found in the pianists while watching the audiovisual performance, particularly in motor and premotor regions of the dorsal stream. While these brain structures have previously been associated with learning simple audio-motor sequences, our findings are the first to suggest their involvement in learning a complex and demanding audiovisual-motor task. Moreover, the most motivated learners and the best performers of the sonata showed ISC in the dorsal stream and in the reward brain network.


Subject(s)
Music , Acetamides , Brain/diagnostic imaging , Humans , Neuroimaging , Psychomotor Performance , Pyrimidines
6.
J Neurosci ; 39(47): 9397-9409, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31636112

ABSTRACT

Music ranks among the greatest human pleasures. It consistently engages the reward system, and converging evidence implies it exploits predictions to do so. Both prediction confirmations and errors are essential for understanding one's environment, and music offers many of each as it manipulates interacting patterns across multiple timescales. Learning models suggest that a balance of these outcomes (i.e., intermediate complexity) optimizes the reduction of uncertainty to rewarding and pleasurable effect. Yet evidence of a similar pattern in music is mixed, hampered by arbitrary measures of complexity. In the present studies, we applied a well-validated information-theoretic model of auditory expectation to systematically measure two key aspects of musical complexity: predictability (operationalized as information content [IC]), and uncertainty (entropy). In Study 1, we evaluated how these properties affect musical preferences in 43 male and female participants; in Study 2, we replicated Study 1 in an independent sample of 27 people and assessed the contribution of veridical predictability by presenting the same stimuli seven times. Both studies revealed significant quadratic effects of IC and entropy on liking that outperformed linear effects, indicating reliable preferences for music of intermediate complexity. An interaction between IC and entropy further suggested preferences for more predictability during more uncertain contexts, which would facilitate uncertainty reduction. Repeating stimuli decreased liking ratings but did not disrupt the preference for intermediate complexity. Together, these findings support long-hypothesized optimal zones of predictability and uncertainty in musical pleasure with formal modeling, relating the pleasure of music listening to the intrinsic reward of learning.SIGNIFICANCE STATEMENT Abstract pleasures, such as music, claim much of our time, energy, and money despite lacking any clear adaptive benefits like food or shelter. Yet as music manipulates patterns of melody, rhythm, and more, it proficiently exploits our expectations. Given the importance of anticipating and adapting to our ever-changing environments, making and evaluating uncertain predictions can have strong emotional effects. Accordingly, we present evidence that listeners consistently prefer music of intermediate predictive complexity, and that preferences shift toward expected musical outcomes in more uncertain contexts. These results are consistent with theories that emphasize the intrinsic reward of learning, both by updating inaccurate predictions and validating accurate ones, which is optimal in environments that present manageable predictive challenges (i.e., reducible uncertainty).


Subject(s)
Auditory Perception/physiology , Learning/physiology , Music/psychology , Pleasure/physiology , Reward , Uncertainty , Acoustic Stimulation/methods , Adolescent , Female , Forecasting , Humans , Male , Random Allocation , Young Adult
8.
PLoS One ; 14(5): e0216499, 2019.
Article in English | MEDLINE | ID: mdl-31051008

ABSTRACT

Learning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons. We hypothesized that long-term active experience of sounds would influence the neural predictions of the stylistic features in professional musicians in a distinct way from the mainly passive experience of sounds in laypersons. Participants with different musical backgrounds were recruited: professional jazz and classical musicians, amateur musicians and non-musicians. They were presented with a musical multi-feature paradigm eliciting mismatch negativity (MMN), a prediction error signal to changes in six sound features for only 12 minutes of electroencephalography (EEG) and magnetoencephalography (MEG) recordings. We observed a generally larger MMN amplitudes-indicative of stronger automatic neural signals to violated priors-in jazz musicians (but not in classical musicians) as compared to non-musicians and amateurs. The specific MMN enhancements were found for spectral features (timbre, pitch, slide) and sound intensity. In participants who were not musicians, the higher preference for jazz music was associated with reduced MMN to pitch slide (a feature common in jazz music style). Our results suggest that long-lasting, active experience of a musical style is associated with accurate neural priors for the sound features of the preferred style, in contrast to passive listening.


Subject(s)
Acoustic Stimulation/methods , Loudness Perception/physiology , Pitch Perception/physiology , Adult , Electroencephalography , Female , Humans , Magnetoencephalography , Male , Music , Young Adult
9.
Proc Natl Acad Sci U S A ; 116(8): 3310-3315, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30728301

ABSTRACT

Enjoying music reliably ranks among life's greatest pleasures. Like many hedonic experiences, it engages several reward-related brain areas, with activity in the nucleus accumbens (NAc) most consistently reflecting the listener's subjective response. Converging evidence suggests that this activity arises from musical "reward prediction errors" (RPEs) that signal the difference between expected and perceived musical events, but this hypothesis has not been directly tested. In the present fMRI experiment, we assessed whether music could elicit formally modeled RPEs in the NAc by applying a well-established decision-making protocol designed and validated for studying RPEs. In the scanner, participants chose between arbitrary cues that probabilistically led to dissonant or consonant music, and learned to make choices associated with the consonance, which they preferred. We modeled regressors of trial-by-trial RPEs, finding that NAc activity tracked musically elicited RPEs, to an extent that explained variance in the individual learning rates. These results demonstrate that music can act as a reward, driving learning and eliciting RPEs in the NAc, a hub of reward- and music enjoyment-related activity.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Decision Making , Music/psychology , Adult , Brain Mapping , Choice Behavior/physiology , Female , Humans , Learning/physiology , Magnetic Resonance Imaging , Male , Motivation/physiology , Reward , Young Adult
10.
Noise Health ; 17(78): 350-7, 2015.
Article in English | MEDLINE | ID: mdl-26356378

ABSTRACT

After intensive, long-term musical training, the auditory system of a musician is specifically tuned to perceive musical sounds. We wished to find out whether a musician's auditory system also develops increased sensitivity to any sound of everyday life, experiencing them as noise. For this purpose, an online survey, including questionnaires on noise sensitivity, musical background, and listening tests for assessing musical aptitude, was administered to 197 participants in Finland and Italy. Subjective noise sensitivity (assessed with the Weinstein's Noise Sensitivity Scale) was analyzed for associations with musicianship, musical aptitude, weekly time spent listening to music, and the importance of music in each person's life (or music importance). Subjects were divided into three groups according to their musical expertise: Nonmusicians (N = 103), amateur musicians (N = 44), and professional musicians (N = 50). The results showed that noise sensitivity did not depend on musical expertise or performance on musicality tests or the amount of active (attentive) listening to music. In contrast, it was associated with daily passive listening to music, so that individuals with higher noise sensitivity spent less time in passive (background) listening to music than those with lower sensitivity to noise. Furthermore, noise-sensitive respondents rated music as less important in their life than did individuals with lower sensitivity to noise. The results demonstrate that the special sensitivity of the auditory system derived from musical training does not lead to increased irritability from unwanted sounds. However, the disposition to tolerate contingent musical backgrounds in everyday life depends on the individual's noise sensitivity.


Subject(s)
Auditory Threshold , Loudness Perception , Music , Perceptual Masking , Teaching , Acoustic Stimulation/methods , Adult , Aptitude/physiology , Evoked Potentials, Auditory , Female , Finland , Humans , Italy , Male , Middle Aged , Noise , Reaction Time , Sound , Time
11.
Front Psychol ; 4: 541, 2013.
Article in English | MEDLINE | ID: mdl-23970875

ABSTRACT

Mounting evidence links the enjoyment of music to brain areas implicated in emotion and the dopaminergic reward system. In particular, dopamine release in the ventral striatum seems to play a major role in the rewarding aspect of music listening. Striatal dopamine also influences reinforcement learning, such that subjects with greater dopamine efficacy learn better to approach rewards while those with lesser dopamine efficacy learn better to avoid punishments. In this study, we explored the practical implications of musical pleasure through its ability to facilitate reinforcement learning via non-pharmacological dopamine elicitation. Subjects from a wide variety of musical backgrounds chose a pleasurable and a neutral piece of music from an experimenter-compiled database, and then listened to one or both of these pieces (according to pseudo-random group assignment) as they performed a reinforcement learning task dependent on dopamine transmission. We assessed musical backgrounds as well as typical listening patterns with the new Helsinki Inventory of Music and Affective Behaviors (HIMAB), and separately investigated behavior for the training and test phases of the learning task. Subjects with more musical experience trained better with neutral music and tested better with pleasurable music, while those with less musical experience exhibited the opposite effect. HIMAB results regarding listening behaviors and subjective music ratings indicate that these effects arose from different listening styles: namely, more affective listening in non-musicians and more analytical listening in musicians. In conclusion, musical pleasure was able to influence task performance, and the shape of this effect depended on group and individual factors. These findings have implications in affective neuroscience, neuroaesthetics, learning, and music therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...