Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Parkinsons Dis ; 9(1): 63, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069159

ABSTRACT

Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.

2.
Hum Brain Mapp ; 42(17): 5626-5635, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34448523

ABSTRACT

The degree of response to subthalamic nucleus deep brain stimulation (STN-DBS) is individual and hardly predictable. We hypothesized that DBS-related changes in cortical network organization are related to the clinical effect. Network analysis based on graph theory was used to evaluate the high-density electroencephalography (HDEEG) recorded during a visual three-stimuli paradigm in 32 Parkinson's disease (PD) patients treated by STN-DBS in stimulation "off" and "on" states. Preprocessed scalp data were reconstructed into the source space and correlated to the behavioral parameters. In the majority of patients (n = 26), STN-DBS did not lead to changes in global network organization in large-scale brain networks. In a subgroup of suboptimal responders (n = 6), identified according to reaction times (RT) and clinical parameters (lower Unified Parkinson's Disease Rating Scale [UPDRS] score improvement after DBS and worse performance in memory tests), decreased global connectivity in the 1-8 Hz frequency range and regional node strength in frontal areas were detected. The important role of the supplementary motor area for the optimal DBS response was demonstrated by the increased node strength and eigenvector centrality in good responders. This response was missing in the suboptimal responders. Cortical topologic architecture is modified by the response to STN-DBS leading to a dysfunction of the large-scale networks in suboptimal responders.


Subject(s)
Cerebral Cortex/physiopathology , Deep Brain Stimulation , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Psychomotor Performance/physiology , Subthalamic Nucleus/physiopathology , Aged , Electroencephalography , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care
3.
Acta Neurol Scand ; 144(1): 81-91, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33881170

ABSTRACT

OBJECTIVE: It is assumed that temporal lobe resection in older people is associated with worse seizure outcomes and potential postsurgical memory decline. We studied postsurgical memory development and surgical efficacy in patients over 45 years of age compared with younger patients. METHODS: We studied 88 patients (51 male and 37 female) after temporal lobe surgery, which involved hippocampal resection. The patients were evaluated before surgery and in the first (72 patients) and/or third (57 patients) postsurgical year. The Wechsler Memory Scale III test was performed to evaluate the MQ postsurgical development. Engel's classification was used to evaluate the postsurgical seizure outcome. RESULTS: The presurgical MQ (median 88) in ≥45 years age group was significantly lower than in both younger groups (median MQ = 100 for ≤30 years age group, p = 0.002; median MQ = 107 for 31-44 years age group, p = 0.002). Three years after the surgery, the MQ decreased significantly in ≤30 years age group (p = 0.012), while only non-significant MQ decline was observed in both older groups. We found no significant impact of age on the surgical outcome. CONCLUSION: Higher age at the time of surgery does not significantly increase the risk for postsurgical memory decline; however, older patients are more likely to have lowered presurgical MQ. We did not find significant differences in the impact of surgery on seizure outcome among the age groups. Epilepsy surgery appears to be a safe and effective method in the age over 45 years even though an earlier surgery should be preferred.


Subject(s)
Epilepsy, Temporal Lobe/psychology , Epilepsy, Temporal Lobe/surgery , Memory Disorders/psychology , Memory/physiology , Neurosurgical Procedures/psychology , Preoperative Care/psychology , Adolescent , Adult , Aged , Epilepsy, Temporal Lobe/diagnosis , Female , Follow-Up Studies , Hippocampus/surgery , Humans , Male , Memory Disorders/diagnosis , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/trends , Preoperative Care/methods , Prospective Studies , Temporal Lobe/surgery , Treatment Outcome , Wechsler Scales , Young Adult
4.
J Neural Transm (Vienna) ; 127(12): 1579-1588, 2020 12.
Article in English | MEDLINE | ID: mdl-32965592

ABSTRACT

Although deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) is generally a successful therapy, adverse events and insufficient clinical effect can complicate the treatment in some patients. We studied clinical parameters and cortical oscillations related to STN-DBS to identify patients with suboptimal responses. High-density EEG was recorded during a visual oddball three-stimuli paradigm in DBS "off" and "on" conditions in 32 PD patients with STN-DBS. Pre-processed data were reconstructed into the source space and the time-frequency analysis was evaluated. We identified a subgroup of six patients with longer reaction times (RT) during the DBS "on" state than in the DBS "off" state after target stimuli. These subjects had lower motor responsiveness to DBS and decreased memory test results compared to the other subjects. Moreover, the alpha and beta power decrease (event-related desynchronizations, ERD), known as an activation correlate linked to motor and cognitive processing, was also reduced in the DBS "on" condition in these patients. A subgroup of PD patients with a suboptimal response to STN-DBS was identified. Evaluation of RT could potentially serve as a biomarker for responsiveness to STN-DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Cognition , Humans , Parkinson Disease/therapy , Reaction Time
5.
PLoS One ; 10(11): e0140778, 2015.
Article in English | MEDLINE | ID: mdl-26529407

ABSTRACT

OBJECTIVE: To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. METHODS: We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. RESULTS: P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. CONCLUSIONS: The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.


Subject(s)
Anterior Thalamic Nuclei/physiopathology , Hippocampus/physiopathology , Memory , Adult , Deep Brain Stimulation , Electrodes, Implanted , Electroencephalography , Epilepsy/physiopathology , Evoked Potentials , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...