Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cancers (Basel) ; 15(3)2023 Jan 24.
Article En | MEDLINE | ID: mdl-36765677

Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.

2.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article En | MEDLINE | ID: mdl-35563109

Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.


Multiple Myeloma , Cell Line, Tumor , Humans , Killer Cells, Natural , Multiple Myeloma/metabolism , Natural Cytotoxicity Triggering Receptor 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism
3.
Mar Drugs ; 19(8)2021 Aug 09.
Article En | MEDLINE | ID: mdl-34436293

Understanding the mechanisms that sustain immunological nonreactivity is essential for maintaining tissue in syngeneic and allogeneic settings, such as transplantation and pregnancy tolerance. While most transplantation rejections occur due to the adaptive immune response, the proinflammatory response of innate immunity is necessary for the activation of adaptive immunity. Botryllus schlosseri, a colonial tunicate, which is the nearest invertebrate group to the vertebrates, is devoid of T- and B-cell-based adaptive immunity. It has unique characteristics that make it a valuable model system for studying innate immunity mechanisms: (i) a natural allogeneic transplantation phenomenon that results in either fusion or rejection; (ii) whole animal regeneration and noninflammatory resorption on a weekly basis; (iii) allogeneic resorption which is comparable to human chronic rejection. Recent studies in B. schlosseri have led to the recognition of a molecular and cellular framework underlying the innate immunity loss of tolerance to allogeneic tissues. Additionally, B. schlosseri was developed as a model for studying hematopoietic stem cell (HSC) transplantation, and it provides further insights into the similarities between the HSC niches of human and B. schlosseri. In this review, we discuss why studying the molecular and cellular pathways that direct successful innate immune tolerance in B. schlosseri can provide novel insights into and potential modulations of these immune processes in humans.


Chordata/immunology , Immunity, Innate , Models, Biological , Stem Cell Transplantation , Animals , Aquatic Organisms , Humans
4.
Stem Cell Reports ; 16(8): 1884-1893, 2021 08 10.
Article En | MEDLINE | ID: mdl-34297939

Immune cells are generated from hematopoietic stem cells (HSCs) in the bone marrow (BM). Immune stimulation can rapidly activate HSCs out of their quiescent state to accelerate the generation of immune cells. HSCs' activation follows various viral or bacterial stimuli, and we sought to investigate the hypersensitivity immune response. Surprisingly, the Ova-induced hypersensitivity peritonitis model finds no significant changes in BM HSCs. HSC markers cKIT, SCA1, CD48, CD150, and the Fgd5-mCherry reporter showed no significant difference from control. Functionally, hypersensitivity did not alter HSCs' potency, as assayed by transplantation. We further characterized the possible impact of hypersensitivity using RNA-sequencing of HSCs, finding minor changes at the transcriptome level. Moreover, hypersensitivity induced no significant change in the proliferative state of HSCs. Therefore, this study suggests that, in contrast to other immune stimuli, hypersensitivity has no impact on HSCs.


Adaptive Immunity/immunology , Bone Marrow Cells/immunology , Hematopoietic Stem Cells/immunology , Hypersensitivity/immunology , Transcriptome/immunology , Animals , Ataxin-1/genetics , Ataxin-1/immunology , Ataxin-1/metabolism , Bone Marrow Cells/metabolism , CD48 Antigen/genetics , CD48 Antigen/immunology , CD48 Antigen/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology , Proto-Oncogene Proteins c-kit/metabolism , RNA-Seq/methods , Transcriptome/genetics
5.
Cell Death Dis ; 12(2): 193, 2021 02 18.
Article En | MEDLINE | ID: mdl-33602907

Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.


Cell Transformation, Viral , Hematopoietic Stem Cells/virology , Lentivirus/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Myeloid, Acute/genetics , Oncogenes , Animals , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Immunocompetence , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/virology , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Transplantation, Isogeneic , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
6.
Sci Rep ; 10(1): 1812, 2020 02 04.
Article En | MEDLINE | ID: mdl-32020016

Haematopoietic stem cells (HSCs) have the potential for lifetime production of blood and immune cells. The introduction of transgenes into HSCs is important for basic research, as well as for multiple clinical applications, because HSC transplantation is an already established procedure. Recently, a major advancement has been reported in the use of cyclosporine H (CsH), which can significantly enhance the lentivirus (LV) transduction of human haematopoietic stem and progenitor cells (HSPCs). In this study, we employed CsH for LV transduction of murine HSCs and defined haematopoietic progenitors, confirming previous findings in more specific subsets of primitive haematopoietic cells. Our data confirm increased efficiencies, in agreement with the published data. We further experimented with the transduction with the simultaneous use of several vectors. The use of CsH yielded an even more robust increase in rates of multi-vector infection than the increase for a single-vector. CsH was reported to reduce the innate resistance mechanism against LV infection. We indeed found that additional pretreatment could increase the efficiency of transduction, in agreement with the originally reported results. Our data also suggest that CsH does not reduce the efficiency of transplantation into immune-competent hosts or the differentiation of HSCs while enhancing stable long-term expression in vivo. This new additive will surely help many studies in animal models and might be very useful for the development of novel HSC gene therapy approaches.


Cyclosporine , Hematopoietic Stem Cells/metabolism , Transduction, Genetic/methods , Animals , Gene Transfer Techniques , Genetic Vectors , Lentivirus , Mice
8.
Stem Cell Reports ; 8(1): 163-176, 2017 01 10.
Article En | MEDLINE | ID: mdl-28041879

Hematopoietic stem cells (HSCs) are rare cells that generate all the various types of blood and immune cells. High-quality transcriptome data have enabled the identification of significant genes for HSCs. However, most genes are expressed in various forms by alternative splicing (AS), extending transcriptome complexity. Here, we delineate AS to determine which isoforms are expressed in mouse HSCs. Our analysis of microarray and RNA-sequencing data includes differential expression of splicing factors that may regulate AS, and a complete map of splicing isoforms. Multiple types of isoforms for known HSC genes and unannotated splicing that may alter gene function are presented. Transcriptome-wide identification of genes and their respective isoforms in mouse HSCs will open another dimension for adult stem cells.


Alternative Splicing , Hematopoietic Stem Cells/metabolism , Transcriptome , Animals , Cluster Analysis , Computational Biology/methods , DNA-Binding Proteins/genetics , Exons , Gene Expression Profiling , Gene Ontology , Hematopoietic Stem Cells/cytology , Homeodomain Proteins/genetics , Introns , Mice , Phenotype , Transcription Factors/genetics , Web Browser
9.
Oncotarget ; 8(65): 109575-109586, 2017 Dec 12.
Article En | MEDLINE | ID: mdl-29312630

Hematopoietic Stem Cells (HSCs) generate blood and immune cells through a hierarchical process of differentiation. Genes that regulate this process are of great interest for understanding normal and also malignant hematopoiesis. Surprisingly, however, very little is known about long-non-coding RNAs (lncRNA) in HSCs. Neat1 is a lncRNA that plays a major role in the formation of sub-nuclear structures called paraspeckles, and was reported to regulate proliferation and differentiation in other cells types. We detected Neat1 expression using RNA-seq data and RT-qPCR in HSCs, progenitors and effector immune cells, by specific detection of its isoforms. Neat1 is highly expressed in stem and progenitor cells, yet it shows significant reduction in granulocytes. Microscopically, Neat1 is detected as sharp nuclear foci. Paraspeckle proteins NONO and PSPC1 are detected as aggregated nuclear foci in fresh primary hematopoietic cells, and in cultured cells. Induction of differentiation in vitro was found to enhance Neat1 expression. Taken together, our data demonstrate for the first time the expression of Neat1 and paraspeckles formation in HSCs and along hematopoiesis.

10.
Ann Bot ; 110(2): 271-80, 2012 Jul.
Article En | MEDLINE | ID: mdl-22408186

BACKGROUND AND AIMS: Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. METHODS: Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. KEY RESULTS: In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. CONCLUSIONS: The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.


Cynodon/physiology , Digitaria/physiology , Pisum sativum/physiology , Plant Roots/physiology , Sodium Chloride/metabolism , Adaptation, Physiological , Droughts , Osmotic Pressure , Plant Stomata/physiology , Signal Transduction , Stress, Physiological , Water/metabolism
...