Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395965

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Vesicular Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/pathology , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Protein Tyrosine Phosphatases/metabolism , Synapses/pathology , TDP-43 Proteinopathies/metabolism , Vesicular Transport Proteins/genetics
4.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37627588

Repeat expansion diseases are a group of neuromuscular and neurodegenerative disorders characterized by expansions of several successive repeated DNA sequences. Currently, more than 50 repeat expansion diseases have been described. These disorders involve diverse pathogenic mechanisms, including loss-of-function mechanisms, toxicity associated with repeat RNA, or repeat-associated non-ATG (RAN) products, resulting in impairments of cellular processes and damaged organelles. Mitochondria, double membrane organelles, play a crucial role in cell energy production, metabolic processes, calcium regulation, redox balance, and apoptosis regulation. Its dysfunction has been implicated in the pathogenesis of repeat expansion diseases. In this review, we provide an overview of the signaling pathways or proteins involved in mitochondrial functioning described in these disorders. The focus of this review will be on the analysis of published data related to three representative repeat expansion diseases: Huntington's disease, C9orf72-frontotemporal dementia/amyotrophic lateral sclerosis, and myotonic dystrophy type 1. We will discuss the common effects observed in all three repeat expansion disorders and their differences. Additionally, we will address the current gaps in knowledge and propose possible new lines of research. Importantly, this group of disorders exhibit alterations in mitochondrial dynamics and biogenesis, with specific proteins involved in these processes having been identified. Understanding the underlying mechanisms of mitochondrial alterations in these disorders can potentially lead to the development of neuroprotective strategies.

5.
Cells ; 11(19)2022 09 27.
Article En | MEDLINE | ID: mdl-36230978

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand-receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.


Epidermal Growth Factor , Myotonic Dystrophy , 3' Untranslated Regions , Epidermal Growth Factor/genetics , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Humans , Ligands , Myotonic Dystrophy/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism
6.
Front Cell Dev Biol ; 10: 950767, 2022.
Article En | MEDLINE | ID: mdl-36051435

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS) and perturbation to ER-mitochondria signaling is seen in cell and transgenic models of ALS. However, there is currently little evidence that ER-mitochondria signaling is altered in human ALS. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a number of ER-mitochondria signaling functions. These include delivery of Ca2+ from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS. Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction in spinal cord motor neurons in control and ALS cases. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic event in post-mortem ALS.

7.
Mol Cell Oncol ; 9(1): 2044263, 2022.
Article En | MEDLINE | ID: mdl-35340790

Phenolic compounds derived from olive oil have beneficial health properties against cancer, neurodegenerative, and metabolic diseases. Therefore, there are discrepancies in their impact on mitochondrial function that result in changes in oxidative capacity, mitochondrial respiration, and energetic demands. This review focuses on the versatile role of oleuropein, a potent antioxidant that regulates the AMPK/SIRT1/mTOR pathway to modulate autophagy/mitophagy and maintain metabolic homeostasis.

8.
Aging Cell ; 21(2): e13549, 2022 02.
Article En | MEDLINE | ID: mdl-35026048

Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER-mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 'tethering' proteins. Here, we show that ER-mitochondria signalling and the VAPB-PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB-PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB-PTPIP51 interaction and ER-mitochondria contacts and that this may involve activation of glycogen synthase kinases-3ß (GSK3ß), a known negative regulator of VAPB-PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca2+ from ER stores to mitochondria, which is a primary function of the VAPB-PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72-mediated toxicity.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism
9.
Neurobiol Dis ; 143: 105020, 2020 09.
Article En | MEDLINE | ID: mdl-32682953

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed.


Alzheimer Disease/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Temporal Lobe/metabolism , Vesicular Transport Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Autopsy , Endoplasmic Reticulum/pathology , Female , Humans , Male , Mitochondria/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Temporal Lobe/pathology
10.
Acta Neuropathol Commun ; 7(1): 73, 2019 05 08.
Article En | MEDLINE | ID: mdl-31068217

Cyclin dependent kinase-5 (cdk5)/p35 is a neuronal kinase that regulates key axonal and synaptic functions but the mechanisms by which it is transported to these locations are unknown. Lemur tyrosine kinase-2 (LMTK2) is a binding partner for p35 and here we show that LMTK2 also interacts with kinesin-1 light chains (KLC1/2). Binding to KLC1/2 involves a C-terminal tryptophan/aspartate (WD) motif in LMTK2 and the tetratricopeptide repeat (TPR) domains in KLC1/2, and this interaction facilitates axonal transport of LMTK2. Thus, siRNA loss of KLC1 or mutation of the WD motif disrupts axonal transport of LMTK2. We also show that LMTK2 facilitates the formation of a complex containing KLC1 and p35 and that siRNA loss of LMTK2 disrupts axonal transport of both p35 and cdk5. Finally, we show that LMTK2 levels are reduced in Alzheimer's disease brains. Damage to axonal transport and altered cdk5/p35 are pathogenic features of Alzheimer's disease. Thus, LMTK2 binds to KLC1 to direct axonal transport of p35 and its loss may contribute to Alzheimer's disease.


Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Axonal Transport , Brain/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 5/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , HEK293 Cells , Humans , Kinesins , Neurons/metabolism , Protein Binding , Rats
11.
Acta Neuropathol Commun ; 7(1): 35, 2019 03 06.
Article En | MEDLINE | ID: mdl-30841933

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by "tethering proteins" that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson's disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson's disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson's disease and FTD/ALS.


Endoplasmic Reticulum/metabolism , Kv Channel-Interacting Proteins/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism , Protein Tyrosine Phosphatases/metabolism , Synapses/metabolism , Animals , Cells, Cultured , Endoplasmic Reticulum/chemistry , Hippocampus/chemistry , Hippocampus/metabolism , Kv Channel-Interacting Proteins/analysis , Mitochondrial Proteins/analysis , Neurons/chemistry , Protein Tyrosine Phosphatases/analysis , Rats , Synapses/chemistry
12.
Cell Death Dis ; 9(3): 337, 2018 03 01.
Article En | MEDLINE | ID: mdl-29497039

Mitochondria form close physical contacts with a specialized domain of the endoplasmic reticulum (ER), known as the mitochondria-associated membrane (MAM). This association constitutes a key signaling hub to regulate several fundamental cellular processes. Alterations in ER-mitochondria signaling have pleiotropic effects on a variety of intracellular events resulting in mitochondrial damage, Ca2+ dyshomeostasis, ER stress and defects in lipid metabolism and autophagy. Intriguingly, many of these cellular processes are perturbed in neurodegenerative diseases. Furthermore, increasing evidence highlights that ER-mitochondria signaling contributes to these diseases, including Parkinson's disease (PD). PD is the second most common neurodegenerative disorder, for which effective mechanism-based treatments remain elusive. Several PD-related proteins localize at mitochondria or MAM and have been shown to participate in ER-mitochondria signaling regulation. Likewise, PD-related mutations have been shown to damage this signaling. Could ER-mitochondria associations be the link between pathogenic mechanisms involved in PD, providing a common mechanism? Would this provide a pharmacological target for treating this devastating disease? In this review, we aim to summarize the current knowledge of ER-mitochondria signaling and the recent evidence concerning damage to this signaling in PD.


Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Signal Transduction , Animals , Endoplasmic Reticulum/genetics , Humans , Mitochondria/genetics , Parkinson Disease/genetics
13.
Cell Death Dis ; 9(3): 327, 2018 02 28.
Article En | MEDLINE | ID: mdl-29491392

Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two related and incurable neurodegenerative diseases. Features of these diseases include pathological protein inclusions in affected neurons with TAR DNA-binding protein 43 (TDP-43), dipeptide repeat proteins derived from the C9ORF72 gene, and fused in sarcoma (FUS) representing major constituent proteins in these inclusions. Mutations in C9ORF72 and the genes encoding TDP-43 and FUS cause familial forms of FTD/ALS which provides evidence to link the pathology and genetics of these diseases. A large number of seemingly disparate physiological functions are damaged in FTD/ALS. However, many of these damaged functions are regulated by signalling between the endoplasmic reticulum and mitochondria, and this has stimulated investigations into the role of endoplasmic reticulum-mitochondria signalling in FTD/ALS disease processes. Here, we review progress on this topic.


Amyotrophic Lateral Sclerosis/metabolism , Dementia/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dementia/genetics , Endoplasmic Reticulum/genetics , Humans , Mitochondria/genetics , Signal Transduction
14.
Mol Neurodegener ; 13(1): 3, 2018 01 23.
Article En | MEDLINE | ID: mdl-29357897

BACKGROUND: Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. METHODS: Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. RESULTS: Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. CONCLUSIONS: Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.


Centrosome/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , rab GTP-Binding Proteins/metabolism , Cell Line , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/pathology , Phosphorylation
15.
Autophagy ; 13(7): 1250-1251, 2017 Jul 03.
Article En | MEDLINE | ID: mdl-28548902

The endoplasmic reticulum (ER) and mitochondria form tight functional contacts that regulate several key cellular processes. The formation of these contacts involves "tethering proteins" that function to recruit regions of ER to mitochondria. The integral ER protein VAPB (VAMP associated protein B and C) binds to the outer mitochondrial membrane protein, RMDN3/PTPIP51 (regulator of microtubule dynamics 3) to form one such set of tethers. Recently, we showed that the VAPB-RMDN3 tethers regulate macroautophagy/autophagy. Small interfering RNA (siRNA) knockdown of VAPB or RMDN3 to loosen ER-mitochondria contacts stimulates autophagosome formation, whereas overexpression of VAPB or RMDN3 to tighten contacts inhibit their formation. Artificial tethering of ER and mitochondria via expression of a synthetic linker protein also reduces autophagy and this artificial tether rescues the effects of VAPB- or RMDN3-targeted siRNA loss on autophagosome formation. Finally, our studies revealed that the modulatory effects of ER-mitochondria contacts on autophagy involve their role in mediating ITPR (inositol 1,4,5-trisphosphate receptor) delivery of Ca2+ from ER stores to mitochondria.


Autophagy , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Calcium/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction
16.
Acta Neuropathol ; 134(1): 129-149, 2017 07.
Article En | MEDLINE | ID: mdl-28337542

α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.


Adenosine Triphosphate/metabolism , Calcium/metabolism , Homeostasis/physiology , Mitochondria/metabolism , Vesicular Transport Proteins/metabolism , alpha-Synuclein/metabolism , Animals , Cations, Divalent/metabolism , Cell Line, Tumor , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Tyrosine Phosphatases/metabolism , Rats, Sprague-Dawley , alpha-Synuclein/genetics
17.
Curr Biol ; 27(3): 371-385, 2017 Feb 06.
Article En | MEDLINE | ID: mdl-28132811

Mitochondria form close physical associations with the endoplasmic reticulum (ER) that regulate a number of physiological functions. One mechanism by which regions of ER are recruited to mitochondria involves binding of the ER protein VAPB to the mitochondrial protein PTPIP51, which act as scaffolds to tether the two organelles. Here, we show that the VAPB-PTPIP51 tethers regulate autophagy. We demonstrate that overexpression of VAPB or PTPIP51 to tighten ER-mitochondria contacts impairs, whereas small interfering RNA (siRNA)-mediated loss of VAPB or PTPIP51 to loosen contacts stimulates, autophagosome formation. Moreover, we show that expression of a synthetic linker protein that artificially tethers ER and mitochondria also reduces autophagosome formation, and that this artificial tether rescues the effects of siRNA loss of VAPB or PTPIP51 on autophagy. Thus, these effects of VAPB and PTPIP51 manipulation on autophagy are a consequence of their ER-mitochondria tethering function. Interestingly, we discovered that tightening of ER-mitochondria contacts by overexpression of VAPB or PTPIP51 impairs rapamycin- and torin 1-induced, but not starvation-induced, autophagy. This suggests that the regulation of autophagy by ER-mitochondria signaling is at least partly dependent upon the nature of the autophagic stimulus. Finally, we demonstrate that the mechanism by which the VAPB-PTPIP51 tethers regulate autophagy involves their role in mediating delivery of Ca2+ to mitochondria from ER stores. Thus, our findings reveal a new molecular mechanism for regulating autophagy.


Autophagy , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Vesicular Transport Proteins/metabolism , Blood Proteins/pharmacology , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Mitochondria/drug effects , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/genetics , RNA, Small Interfering/genetics , Sirolimus/pharmacology , Starvation , Vesicular Transport Proteins/antagonists & inhibitors , Vesicular Transport Proteins/genetics
18.
EMBO Rep ; 17(9): 1326-42, 2016 09.
Article En | MEDLINE | ID: mdl-27418313

Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3ß (GSK-3ß), a kinase already strongly associated with ALS/FTD.


Amyotrophic Lateral Sclerosis/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , RNA-Binding Protein FUS/metabolism , Vesicular Transport Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Disease Models, Animal , Endoplasmic Reticulum/ultrastructure , Enzyme Activation , Gene Expression , Humans , Mice , Mice, Transgenic , Mitochondria/ultrastructure , Mutation , Protein Binding , RNA-Binding Protein FUS/genetics
19.
Autophagy ; 12(9): 1487-506, 2016 09.
Article En | MEDLINE | ID: mdl-27383256

Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load.


Endosomes/metabolism , Iron Overload , Lysosomes/metabolism , NADP/analogs & derivatives , rab GTP-Binding Proteins/metabolism , Animals , Apoptosis , Autophagy , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Cell Line, Tumor , Cell Survival , Cytosol/metabolism , DNA/chemistry , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Iron/chemistry , NADP/chemistry , Neurodegenerative Diseases/metabolism , Oxidative Stress , PC12 Cells , Rats , rab7 GTP-Binding Proteins
20.
Trends Neurosci ; 39(3): 146-157, 2016 Mar.
Article En | MEDLINE | ID: mdl-26899735

Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.


Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Animals , Endoplasmic Reticulum/ultrastructure , Humans , Mitochondria/ultrastructure , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy
...