Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1417716, 2024.
Article in English | MEDLINE | ID: mdl-39076981

ABSTRACT

Background: Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infection, yet the potential causal relationship between the immunophenotype and sepsis remains unclear. Methods: Genetic variants associated with the immunophenotype served as instrumental variables (IVs) in Mendelian randomization (MR) to elucidate the causal impact of the immunophenotype on three sepsis outcomes. Additionally, a two-step MR analysis was conducted to identify significant potential mediators between the immunophenotype and three sepsis outcomes. Results: Our MR analysis demonstrated a significant association between the immunophenotype and sepsis outcome, with 36, 36, and 45 the immunophenotype associated with the susceptibility, severity, and mortality of sepsis, respectively. Specifically, our analysis highlighted the CD14+ CD16+ monocyte phenotype as a significant factor across all three sepsis outcomes, with odds ratios (ORs) and corresponding confidence intervals (CIs) indicating its impact on sepsis (OR = 1.047, CI: 1.001-1.096), sepsis in Critical Care Units (OR = 1.139, CI: 1.014-1.279), and sepsis-related 28-day mortality (OR = 1.218, CI: 1.104-1.334). Mediation analyses identified seven cytokines as significant mediators among 91 potential cytokines, including interleukin-5 (IL-5), S100A12, TNF-related apoptosis-inducing ligand (TRAIL), T-cell surface glycoprotein CD6 isoform, cystatin D, interleukin-18 (IL-18), and urokinase-type plasminogen activator (uPA). Furthermore, reverse MR analysis revealed no causal effect of sepsis outcomes on the immunophenotype. Conclusion: Our MR study suggests that the immunophenotype is significantly associated with the susceptibility, severity, and mortality of patient with sepsis, providing, for the first time, robust evidence of significant associations between immune traits and their potential risks. This information is invaluable for clinicians and patients in making informed decisions and merits further attention.


Subject(s)
Cytokines , Mendelian Randomization Analysis , Sepsis , Humans , Sepsis/immunology , Sepsis/genetics , Sepsis/mortality , Cytokines/metabolism , Genetic Predisposition to Disease , Immunophenotyping , Polymorphism, Single Nucleotide , Monocytes/immunology , Monocytes/metabolism
2.
Front Immunol ; 15: 1374787, 2024.
Article in English | MEDLINE | ID: mdl-38601150

ABSTRACT

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Subject(s)
Pancreatitis , Sepsis , Humans , Pancreatitis/genetics , CD8-Positive T-Lymphocytes , Acute Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sepsis/genetics
3.
Ren Fail ; 46(1): 2310081, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38321925

ABSTRACT

Background and purpose: Acute kidney injury (AKI) is a common serious complication in sepsis patients with a high mortality rate. This study aimed to develop and validate a predictive model for sepsis associated acute kidney injury (SA-AKI). Methods: In our study, we retrospectively constructed a development cohort comprising 733 septic patients admitted to eight Grade-A tertiary hospitals in Shanghai from January 2021 to October 2022. Additionally, we established an external validation cohort consisting of 336 septic patients admitted to our hospital from January 2017 to December 2019. Risk predictors were selected by LASSO regression, and a corresponding nomogram was constructed. We evaluated the model's discrimination, precision and clinical benefit through receiver operating characteristic (ROC) curves, calibration plots, decision curve analysis (DCA) and clinical impact curves (CIC) in both internal and external validation. Results: AKI incidence was 53.2% in the development cohort and 48.2% in the external validation cohort. The model included five independent indicators: chronic kidney disease stages 1 to 3, blood urea nitrogen, procalcitonin, D-dimer and creatine kinase isoenzyme. The AUC of the model in the development and validation cohorts was 0.914 (95% CI, 0.894-0.934) and 0.923 (95% CI, 0.895-0.952), respectively. The calibration plot, DCA, and CIC demonstrated the model's favorable clinical applicability. Conclusion: We developed and validated a robust nomogram model, which might identify patients at risk of SA-AKI and promising for clinical applications.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Nomograms , Retrospective Studies , China
4.
Heliyon ; 10(1): e23266, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187232

ABSTRACT

Background: In addition to excessive inflammation, immunosuppression has been recognized as a contributing factor to poor prognosis of sepsis. Although it has been reported that T cells can become functionally impaired during sepsis, the underlying mechanisms responsible for this phenomenon remain unclear. This study aims to elucidate the mechanisms by which macrophages induce immunosuppression in T cells. Methods: In an in vivo setting, C57BL-6J mice were subjected to cecal ligation and puncture (CLP) with or without depletion of macrophages, and the functions of T cells were assessed. In vitro experiments involved direct co-culture or separate culture of T cells and septic macrophages using a transwell system, followed by analysis of T cell immunity. Additionally, a siRNA targeting CD18 on macrophages was utilized to investigate the role of complement receptor 3 (CR3). Results: Both macrophages and T cells exhibited immunosuppression during sepsis. In the in vivo experiments, the absence of macrophages partially alleviated T cell immunosuppression, as evidenced by restored vitality, increased production of TNF-α and IFN-γ, elevated CD8+ T cell levels, and decreased CD25+ T cell levels. In the in vitro experiments, direct co-culture of T cells with septic macrophages resulted in diminished T cell immunity, which was improved when T cells and macrophages were separated by a chamber wall. The expression of CR3 (CD11b/CD18) was upregulated on septic macrophages, and silencing of CD18 led to decreased TNF-α production by T cells, reduced CD4+ T cell numbers, and increased CD25+ T cell numbers. Conclusion: In sepsis, macrophages induce immunosuppression in T cells through direct cell-cell contact, with the involvement of CR3.

5.
Int Immunopharmacol ; 128: 111575, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280334

ABSTRACT

Sepsis-associated liver dysfunction (SALD) aggravates the disease progression and prognosis of patients. Macrophages in the liver play a crucial role in the occurrence and development of SALD. Human umbilical cord mesenchymal stem cells (MSCs), by secreting extracellular vesicles (EVs), show beneficial effects in various inflammatory diseases. However, whether MSC-derived EVs (MSC-EVs) could ameliorate the inflammatory response in liver macrophages and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis induced by lipopolysaccharide (LPS) challenge was used to investigate the immunomodulatory functions of MSC-EVs in SALD. LPS-stimulated primary Kupffer cells (KCs) and Raw264.7 were used to further explore the potential mechanisms of MSC-EVs in regulating the inflammatory response of macrophages. The results showed that MSC-EVs alleviated liver tissue injury and facilitated the polarization of M1 to M2 macrophages. Further in vitro studies confirmed that MSC-EVs treatment significantly downregulated the expression of several enzymes related to glycolysis and reduced the glycolytic flux by inhibiting hypoxia-inducible factor 1α (HIF-1α) expression, thus effectively inhibiting the inflammatory responses of macrophages. These findings reveal that the application of MSC-EVs might be a potential therapeutic strategy for treating SALD.


Subject(s)
Extracellular Vesicles , Liver Diseases , Mesenchymal Stem Cells , Sepsis , Mice , Animals , Humans , Lipopolysaccharides/metabolism , Macrophages/metabolism , Liver Diseases/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Sepsis/metabolism
6.
J Med Virol ; 95(12): e29342, 2023 12.
Article in English | MEDLINE | ID: mdl-38130170

ABSTRACT

Shanghai has faced an unprecedented COVID-19 pandemic with the BA.2.2 strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infection. Comprehensive insights into its epidemiology, clinical manifestations, and viral shedding dynamics are currently limited. This study encompasses 208373 COVID-19 patients that were infected with the Omicron BA.2.2 sub-lineage in Shanghai, China. Demographic information, clinical symptoms, vaccination status, isolation status, as well as viral shedding time (VST) were recorded. Among the COVID-19 patients included in this study, 187124 were asymptomatic and 21249 exhibited mild symptoms. The median VST was 8.3 days. The common clinical symptoms included fever, persistent cough, phlegm, sore throat, and gastrointestinal symptoms. Factors such as advanced age, presence of comorbidities, mild symptomatology, and delayed isolation correlated with extended VST. Conversely, female gender and administration of two or three vaccine doses correlated with a reduction in VST. This investigation offers an in-depth characterization and analytical perspective on Shanghai's recent COVID-19 surge. Prolonged viral shedding of SARS-CoV-2 was observed in elderly, male, symptomatic patients, and those with comorbidity. Female, individuals with two or three vaccine doses, as well as those isolated early, shows an effective reduced VST.


Subject(s)
COVID-19 , Vaccines , Aged , Humans , Female , Male , Retrospective Studies , SARS-CoV-2 , COVID-19/epidemiology , China/epidemiology , Pandemics , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL