Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
1.
Water Res ; 263: 122133, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39088879

ABSTRACT

Membrane fouling remains a significant challenge in wastewater treatment, hindering both efficiency and lifespan. This study reports a distinct phenomenon of stratified membrane clogging observed in a full-scale cross-flow tubular ultrafiltration (UF) system treating sludge anaerobic digestion (AD) reject water. The distinct stratified structure, comprising inner and outer layers within the cake layer, has not been previously described. This research involved characterizing the filtration performance, analyzing membrane clog composition, and proposing a two-stage formation mechanism for the stratified clogs. It was revealed that higher inorganic and lower organic content in the outer layer compared to the inner layer. Acid and alkali treatments demonstrated the effectiveness of combined cleaning strategies. A mathematical model was developed to determine the critical conditions for stratified clog formation, influenced by membrane flux and cross-flow velocity (CFV). It is proposed that outer layer forms through long-term selective deposition, while the inner layer results from short-term dewatering within limited tubular space. High CFV (>2.5 m/s) prevents inner layer formation. Critical conditions for stratification occur at a flux of 18 L/m2/h with a CFV of 0.1 m/s or 65 L/m2/h with a CFV of 0.35 m/s. This study contributes a novel understanding of stratified membrane clogging, proposing a two-stage formation mechanism and identifying critical conditions, which provides insights for effective fouling control strategies and maintenance of operational efficiency for membrane systems.

2.
Quintessence Int ; 0(0): 0, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162208

ABSTRACT

OBJECTIVES: Diode laser represent a practical clinical strategy for treating gingival hyperpigmentation. However, its effectiveness remains controversial. We conducted a meta-analysis evaluating the quantitative effects of diode laser therapy on gingival hyperpigmentation. METHOD AND MATERIALS: Pubmed, Embase, Web Of Science, and Cochrane Library were systematically searched for the use of diode laser in gingival hyperpigmentation. The primary outcomes assessed were the Dummett-Gupta Oral Pigmentation Index (DOPI), Visual Analog Scale (VAS) pain scores, and the Wound Healing Index (WHI) for overall evaluation. I2 index was calculated to identify heterogeneity and sensitivity analyses sources of heterogeneity. Funnel plots and Egger's test were utilized to evaluate publication bias. RESULTS: Thirteen randomized controlled trials (RCTs) involving a total of 233 participants were included in this study. The analysis demonstrated that diode laser had a significant effect on DOPI (standard mean difference [SMD] = -0.245, 95% CI = -0.415 to -0.040, P =.019) and VAS (SMD = -0.089, 95% CI = -1.332 to -0.285, P =.002), with no significant effect on WHI (SMD = -0.224, 95% CI = -1.100 to 0.653, P =.617). Despite the significant heterogeneity in VAS and WHI indicated by the I2 index statistic, the sensitivity analyses' results demonstrated the main findings' reliability. While no significant publication bias was detected for DOPI and WHI, the VAS results exhibited notable publication bias. CONCLUSION: The study demonstrated that diode laser prolongs gingival repigmentation time and reduces pain compared to other treatments. However, the efficacy in wound healing did not significantly promote.

3.
Cell Death Dis ; 15(8): 600, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160159

ABSTRACT

Crizotinib carries an FDA hepatotoxicity warning, yet analysis of the FAERS database suggests that the severity of its hepatotoxicity risks, including progression to hepatitis and liver failure, might be underreported. However, the underlying mechanism remains poorly understood, and effective intervention strategies are lacking. Here, mRNA-sequencing analysis, along with KEGG and GO analyses, revealed that DEGs linked to Crizotinib-induced hepatotoxicity predominantly associate with the ferroptosis pathway which was identified as the principal mechanism behind Crizotinib-induced hepatocyte death. Furthermore, we found that ferroptosis inhibitors, namely Ferrostatin-1 and Deferoxamine mesylate, significantly reduced Crizotinib-induced hepatotoxicity and ferroptosis in both in vivo and in vitro settings. We have also discovered that overexpression of AAV8-mediated Nrf2 could mitigate Crizotinib-induced hepatotoxicity and ferroptosis in vivo by restoring the imbalance in glutathione metabolism, iron homeostasis, and lipid peroxidation. Additionally, both Stat1 deficiency and the Stat1 inhibitor NSC118218 were found to reduce Crizotinib-induced ferroptosis. Mechanistically, Crizotinib induces the phosphorylation of Stat1 at Ser727 but not Tyr701, promoting the transcriptional inhibition of Nrf2 expression after its entry into the nucleus to promote ferroptosis. Meanwhile, we found that MgIG and GA protected against hepatotoxicity to counteract ferroptosis without affecting or compromising the anti-cancer activity of Crizotinib, with a mechanism potentially related to the Stat1/Nrf2 pathway. Overall, our findings identify that the phosphorylation activation of Stat1 Ser727, rather than Tyr701, promotes ferroptosis through transcriptional inhibition of Nrf2, and highlight MgIG and GA as potential therapeutic approaches to enhance the safety of Crizotinib-based cancer therapy.


Subject(s)
Chemical and Drug Induced Liver Injury , Crizotinib , Ferroptosis , NF-E2-Related Factor 2 , STAT1 Transcription Factor , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Humans , Animals , Crizotinib/pharmacology , Crizotinib/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/genetics , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice , Signal Transduction/drug effects , Male , Phenylenediamines/pharmacology , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Phosphorylation/drug effects
4.
J Thorac Dis ; 16(6): 3932-3943, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983168

ABSTRACT

Background: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia encountered in clinical practice, and it is associated with an increased risk of mortality, stroke, and peripheral embolism. The risk of stroke in AF is heterogeneous and dependent on underlying clinical conditions included in current risk stratification schemes. Recently, the CHA2DS2-VASc score has been incorporated into guidelines to encompass common stroke risk factors observed in routine clinical practice. The aim of this study was to study the predictive value of CHA2DS2-VASc score on the prognosis of patients with AF to determine the correlation of major complications including cerebral infarction and intracranial hemorrhage in patients with AF with oral anticoagulant and antiplatelet aggregation drugs and to identify the risk factors for all-cause mortality. Methods: A prospective study was conducted on 181 patients with AF who underwent physical examinations at Hai'an Qutang Central Hospital from January 2020 to December 2020. The patient's general condition, chronic disease history, CHA2DS2-VASc [congestive heart failure, hypertension, age ≥75 years (doubled), diabetes, stroke (doubled), vascular disease, age 65 to 74 years, and sex category (female)] score, left ventricular ejection fraction (LVEF), lipid metabolism, and oral anticoagulant and antiplatelet aggregation medication during physical examination were recorded. By using telephone meetings to complete the follow-up, we tracked the patient's cerebral infarction, intracranial hemorrhage, and survival status within 2 years of follow-up, statistically analyzed the relationship between AF complications and medication, and grouped patients with AF based on the CHA2DS2-VASc score to evaluate its predictive ability for mortality outcomes in these patients. Results: The patients were divided into four groups according to the medication situation, and the incidence of cerebral infarction in the combination group was significantly lower than that in the non-medication group (0.0% vs. 19.2%; P<0.01). The incidence of intracranial hemorrhage in the combination group was significantly higher than that in the non-drug group (13.8% vs. 0.0%; P<0.01). The logistic regression model indicated that patients with a history of cerebral infarction had an increased risk of death compared to those without a history of cerebral infarction [odds ratio (OR) =7.404; 95% confidence interval (CI): 2.255-24.309]. After grouping according to the CHA2DS2-VASc score, we found that there was a significant difference in the 2-year survival rate between patients with CHA2DS2-VASc score <5 and those with a score ≥5 (P<0.01). The characteristic curve analysis of the participants showed that the CHA2DS2-VASc score had good predictive ability for all-cause mortality in patients with AF (area under the curve =0.754), with a cutoff value of 4, a sensitivity of 62.50%, a specificity of 86.06%, and a 95% CI of 0.684-0.815. Conclusions: The CHA2DS2-VASc score demonstrated high predictive value for all-cause mortality in patients with AF.

5.
Arch Pharm (Weinheim) ; : e2400137, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963324

ABSTRACT

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.

6.
Cell Biol Toxicol ; 40(1): 55, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008169

ABSTRACT

Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.


Subject(s)
Cytokines , HMGB1 Protein , Inflammation , HMGB1 Protein/metabolism , Humans , Animals , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Cytokines/metabolism , Receptor for Advanced Glycation End Products/metabolism
7.
China CDC Wkly ; 6(27): 651-657, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39027633

ABSTRACT

What is already known about this topic?: Given the common modes of transmission, outbreaks of both human immunodeficiency virus (HIV) and syphilis are primarily observed in men who have sex with men (MSM). However, minimal research has been conducted to concurrently evaluate the rates and trends of HIV and syphilis incidence within this community in China. What is added by this report?: This manuscript presents the incidence rates and associated factors of HIV and syphilis in MSM in Tianjin based on data derived from a decade-long cohort study. Intriguingly, it depicts a decreasing trend in HIV incidence juxtaposed with an increasing incidence of syphilis among this population in Tianjin. What are the implications for public health practice?: The interconnected risk factors for HIV and syphilis pose significant hindrances to disease control. Our study underscores the urgent need for improved intervention strategies specifically aimed at MSM to mitigate the propagation of both infections.

8.
Biomed Opt Express ; 15(6): 3950-3961, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38867793

ABSTRACT

The spatial omics information analysis of heterogeneous cells or cell populations is of great importance for biomedical research. Herein, we proposed a picosecond laser capture microdissection boosted by edge catapulting combined with dielectrophoretic force (ps-LMED) that enables fast and non-invasive acquisition of uncontaminated cells and cell populations for downstream molecular assays. The target cells were positioned under a microscope and separated by a focused picosecond pulsed laser. The system employed the plasma expansion force during cutting to lift the target and captured it under dielectrophoretic force from the charged collection cap eventually. The principle of our system has been validated by both theoretical analysis and practical experiments. The results indicated that our system can collect samples ranging from a single cell with a diameter of a few microns to large tissues with a volume of 532,500 µm3 at the moment finishing the cutting, without further operations. The cutting experiments of living cells and ribonucleic acid (RNA) and protein omics analysis results of collected targets demonstrated the advantage of non-destructiveness to the samples and feasibility in omics applications.

9.
Front Neuroanat ; 18: 1388084, 2024.
Article in English | MEDLINE | ID: mdl-38846539

ABSTRACT

Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 µm × 0.65 µm × 3 µm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain's 3D anatomical structure.

10.
Cell Metab ; 36(6): 1320-1334.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838643

ABSTRACT

Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Myeloid-Derived Suppressor Cells , Animals , Mice , Myeloid-Derived Suppressor Cells/metabolism , Humans , Neoplasm Metastasis , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Mice, Inbred C57BL , Male , Tumor Microenvironment , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Female , Mice, Inbred BALB C , Cell Line, Tumor
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836835

ABSTRACT

Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.


Subject(s)
Deep Learning , Neocortex , Neurons , Animals , Neocortex/cytology , Mice , Mice, Inbred C57BL , Male , Imaging, Three-Dimensional/methods , Tomography, Optical/methods
12.
Mol Med ; 30(1): 95, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910244

ABSTRACT

BACKGROUND: Ketone ß-hydroxybutyrate (BHB) has been reported to prevent tumor cell proliferation and improve drug resistance. However, the effectiveness of BHB in oxaliplatin (Oxa)-resistant colorectal cancer (CRC) and the underlying mechanism still require further proof. METHODS: CRC-Oxa-resistant strains were established by increasing concentrations of CRC cells to Oxa. CRC-Oxa cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were checked following BHB intervention in vitro. The subcutaneous and metastasis models were established to assess the effects of BHB on the growth and metastasis of CRC-Oxa in vivo. Eight Oxa responders and seven nonresponders with CRC were enrolled in the study. Then, the serum BHB level and H3K79me, H3K27ac, H3K14ac, and H3K9me levels in tissues were detected. DOT1L (H3K79me methyltransferase) gene knockdown or GNE-049 (H3K27ac inhibitor) use was applied to analyze further whether BHB reversed CRC-Oxa resistance via H3K79 demethylation and/or H3K27 deacetylation in vivo and in vitro. RESULTS: Following BHB intervention based on Oxa, the proliferation, migration, invasion, and EMT of CRC-Oxa cells and the growth and metastasis of transplanted tumors in mice were suppressed. Clinical analysis revealed that the differential change in BHB level was associated with drug resistance and was decreased in drug-resistant patient serum. The H3K79me, H3K27ac, and H3K14ac expressions in CRC were negatively correlated with BHB. Furthermore, results indicated that H3K79me inhibition may lead to BHB target deletion, resulting in its inability to function. CONCLUSIONS: ß-hydroxybutyrate resensitized CRC cells to Oxa by suppressing H3K79 methylation in vitro and in vivo.


Subject(s)
3-Hydroxybutyric Acid , Cell Proliferation , Colorectal Neoplasms , Drug Resistance, Neoplasm , Histones , Oxaliplatin , Oxaliplatin/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Humans , 3-Hydroxybutyric Acid/pharmacology , Animals , Mice , Histones/metabolism , Methylation , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Male , Epithelial-Mesenchymal Transition/drug effects , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Movement/drug effects , Apoptosis/drug effects , Mice, Nude
13.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928210

ABSTRACT

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Subject(s)
Brain , Formaldehyde , Sequence Analysis, RNA , Tissue Fixation , Formaldehyde/chemistry , Animals , Mice , Brain/metabolism , Tissue Fixation/methods , Sequence Analysis, RNA/methods , Alzheimer Disease/genetics , Polymers/chemistry , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA/genetics
14.
Mol Ther Nucleic Acids ; 35(2): 102214, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38784176

ABSTRACT

[This retracts the article DOI: 10.1016/j.omtn.2019.08.024.].

15.
Neurosci Bull ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801564

ABSTRACT

The orbitofrontal cortex (ORB), a region crucial for stimulus-reward association, decision-making, and flexible behaviors, extensively connects with other brain areas. However, brain-wide inputs to projection-defined ORB neurons and the distribution of inhibitory neurons postsynaptic to neurons in specific ORB subregions remain poorly characterized. Here we mapped the inputs of five types of projection-specific ORB neurons and ORB outputs to two types of inhibitory neurons. We found that different projection-defined ORB neurons received inputs from similar cortical and thalamic regions, albeit with quantitative variations, particularly in somatomotor areas and medial groups of the dorsal thalamus. By counting parvalbumin (PV) or somatostatin (SST) interneurons innervated by neurons in specific ORB subregions, we found a higher fraction of PV neurons in sensory cortices and a higher fraction of SST neurons in subcortical regions targeted by medial ORB neurons. These results provide insights into understanding and investigating the function of specific ORB neurons.

16.
Glob Heart ; 19(1): 45, 2024.
Article in English | MEDLINE | ID: mdl-38737730

ABSTRACT

Objective: Skeletal muscle mass and cardiac structure change with age. It is unclear whether the loss of skeletal muscle mass (SMM) is accompanied by a decrease in heart mass loss. The aim of this study is to investigate the relationship of left ventricular mass (LVM) with sarcopenia and its severity in elderly inpatients. Methods: Seventy-one sarcopenia subjects and 103 non-sarcopenia controls were enrolled in this study. Bioelectrical impedance analysis, handgrip strength, and 5-time chair stand test were used to evaluate SMM, muscle strength, and physical performance, respectively. Myocardial structure and function were assessed by echocardiography. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia criteria 2019. Results: Sarcopenic patients had smaller left ventricular sizes and LVM than non-sarcopenic controls. Severe sarcopenic patients had smaller left ventricular sizes and LVM than non-severe sarcopenic patients. In univariate regression analysis, body mass index (BMI), cardiac size, and LVM were positively correlated with SMM or SMI. In multivariate regression analysis, BMI and LVM were independently correlated with SMM and SMI. The combined measurement of LVM and BMI predicts sarcopenia with 66.0% sensitivity and 88.7% specificity (AUC: 0.825; 95% CI: (0.761, 0.889); p < 0.001). Conclusion: In hospitalized elderly patients, decreased left ventricular mass is associated with sarcopenia and its severity, and the combined measurement of LVM and BMI has a predictive value for sarcopenia.


Subject(s)
Echocardiography , Heart Ventricles , Sarcopenia , Severity of Illness Index , Humans , Sarcopenia/physiopathology , Sarcopenia/diagnostic imaging , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Male , Female , Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Inpatients , Aged, 80 and over , Ventricular Function, Left/physiology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Body Mass Index
17.
Neurosci Bull ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819707

ABSTRACT

Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.

18.
Front Biosci (Landmark Ed) ; 29(5): 196, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38812300

ABSTRACT

BACKGROUND: Developing a novel COVID-19 multi-epitope vaccine (CoVMEV) is essential to containing the SARS-CoV-2 pandemic. METHODS: The virus's immunodominant B and T cell epitopes from the S protein were found and joined to create the CoVMEV. Bioinformatics techniques were used to investigate the secondary and tertiary structures, as well as the physical and chemical properties of CoVMEV. RESULTS: CoVMEV exhibited high antigenicity and immunogenicity scores, together with good water solubility and stability. Toll-like receptor 2 (TLR2) and toll-like receptor4 (TLR4), which are critical in triggering immunological responses, were also strongly favoured by CoVMEV. Molecular dynamics simulation and immune stimulation studies revealed that CoVMEV effectively activated T and B lymphocytes, and increased the number of active CD8+ T cells than similar vaccines. CONCLUSION: CoVMEV holds promise as a potential vaccine candidate for COVID-19, given its robust immunogenicity, stability, antigenicity, and capacity to stimulate a strong immune response. This study presents a significant design concept for the development of peptidyl vaccines targeting SARS-CoV-2. Further investigation and clinical trials will be crucial in assessing the efficacy and safety of CoVMEV as a potential vaccine for COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Vaccines/immunology , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/immunology , Epitopes, T-Lymphocyte/immunology , COVID-19/prevention & control , COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , Computational Biology/methods , Molecular Dynamics Simulation , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Immunogenicity, Vaccine , CD8-Positive T-Lymphocytes/immunology , Immunoinformatics
19.
Gene ; 923: 148563, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38754569

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS: In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS: Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION: Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.


Subject(s)
Diabetic Cardiomyopathies , Glucose , Myocytes, Cardiac , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Glucose/metabolism , Glucose/pharmacology , Cell Line , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Profiling , Mitochondria/metabolism , Mitochondria/genetics , Calcium/metabolism
20.
J Nanobiotechnology ; 22(1): 278, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783363

ABSTRACT

Amyloid-ß (Aß) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aß aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aß42, we developed an Aß42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aß-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aß42 misfolding, accelerating Aß42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aß clearance exhibited by this Aß42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerium , Nanocomposites , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/metabolism , Nanocomposites/chemistry , Mice , Cerium/chemistry , Cerium/pharmacology , Mice, Transgenic , Silicon Dioxide/chemistry , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Humans , Brain/metabolism , Nanoparticles/chemistry , Glycoproteins/chemistry , Glycoproteins/pharmacology , Glycoproteins/metabolism , Disease Models, Animal , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL