Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Plant Sci ; 14: 1217956, 2023.
Article En | MEDLINE | ID: mdl-37674737

Ramie is an important fiber feed dual-purpose crop in China and plays an important role in the national economy. However, ramie yield and quality can be reduced after many years of continuous cultivation. Currently, relatively little research has been conducted on rhizosphere metabolites and their pathways in continuous ramie cropping. Therefore, a healthy group (CK) and obstacle groups (XZQG, JZ, DJY, and GXD) with 8 years of continuous cultivation were selected for the study. LC-MS and GC-MS untargeted metabolomics were used to explore and analyze ramie rhizosphere metabolites and pathways. The results revealed that significant differences in the agronomic traits of ramie occurred after 8 years of continuous cultivation, with dwarfed plants and decreased yields in the obstacle groups. Metabolomic analysis identified 49 and 19 rhizosphere metabolites, including lipids, organic acids, phenols, and amino acids. In addition, four differential metabolic pathways (phenylpropanoid biosynthesis, fatty acid metabolism, amino acid metabolism, and ascorbate and aldarate metabolism) were elucidated. It was also clarified that sinapic acid, jasmonic acid, glutamine, and inositol might be the main metabolites affecting ramie continuous-cropping obstacle groups, and they were significantly correlated with ramie agronomic traits and physiological indicators. This provided important insights into the mechanisms affecting continuous ramie cropping. Accordingly, it is expected that the increase or decrease of sinapic acid, jasmonic acid, glutamine, and inositol in the soil will alleviate obstacles to continuous ramie cropping and promote the healthy development of the ramie industry in the future.

2.
Exp Ther Med ; 12(2): 567-572, 2016 Aug.
Article En | MEDLINE | ID: mdl-27446245

Diabetic periodontitis (DP), which has been shown to cause alveolar bone loss, is among the most common complications associated with diabetes. The precise mechanisms underlying alveolar bone loss in patients with DP remain unclear. Therefore, the present study established a co-culture system of bone marrow stem cells (BMSCs) and macrophages, in order to investigate the potential mechanisms underlying DP-associated alveolar bone loss in vitro. In addition, Porphyromonas gingivalis (PG) periodontal infection and high glucose levels were used to induce DP in mice. The present study evaluated the protein expression levels of various chemokines and the migration of BMSCs and macrophages. The protein expression levels of extracellular signal-regulated kinase 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) were significantly increased in the BMSCs exposed to high glucose and PG, which may have been due to the activation of MAPK. In addition, DP induction in mice was associated with the release of chemokine (C-C motif) ligand 2 (CCL2) from BMSCs and the secretion of chemokine (C-C Motif) receptor 2 (CCR2) and tumor necrosis factor-α from macrophages, which was associated in turn with enhanced adhesion and chemotaxis of macrophages. The results of the present study suggested that DP led to the upregulation of CCL2 in the periodontal tissues and enhanced macrophage infiltration via the CCL2/CCR2 axis, which in turn promoted alveolar bone loss.

...