ABSTRACT
BACKGROUND: Education influences brain health and dementia. However, its impact across regions, specifically Latin America (LA) and the United States (US), is unknown. METHODS: A total of 1412 participants comprising controls, patients with Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) from LA and the US were included. We studied the association of education with brain volume and functional connectivity while controlling for imaging quality and variability, age, sex, total intracranial volume (TIV), and recording type. RESULTS: Education influenced brain measures, explaining 24%-98% of the geographical differences. The educational disparities between LA and the US were associated with gray matter volume and connectivity variations, especially in LA and AD patients. Education emerged as a critical factor in classifying aging and dementia across regions. DISCUSSION: The results underscore the impact of education on brain structure and function in LA, highlighting the importance of incorporating educational factors into diagnosing, care, and prevention, and emphasizing the need for global diversity in research. HIGHLIGHTS: Lower education was linked to reduced brain volume and connectivity in healthy controls (HCs), Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD). Latin American cohorts have lower educational levels compared to the those in the United States. Educational disparities majorly drive brain health differences between regions. Educational differences were significant in both conditions, but more in AD than FTLD. Education stands as a critical factor in classifying aging and dementia across regions.
Subject(s)
Alzheimer Disease , Brain , Educational Status , Magnetic Resonance Imaging , Humans , Latin America , Male , Female , United States , Brain/pathology , Brain/diagnostic imaging , Aged , Alzheimer Disease/pathology , Middle Aged , Frontotemporal Lobar Degeneration/pathology , Dementia/pathology , Dementia/epidemiologyABSTRACT
Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.
ABSTRACT
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/pathology , Magnetic Resonance Imaging , Brain , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Atrophy/pathologyABSTRACT
Neurocognitive research on social concepts underscores their reliance on fronto-temporo-limbic regions mediating broad socio-cognitive skills. Yet, the field has neglected another structure increasingly implicated in social cognition: the cerebellum. The present exploratory study examines this link combining a novel naturalistic text paradigm, a relevant atrophy model and functional magnetic resonance imaging. Fifteen cerebellar ataxia (CA) patients with focal cerebellar atrophy and 29 matched controls listened to a social text (highlighting interpersonal events) as well as a non-social text (focused on a single person's actions), and answered comprehension questionnaires. We compared behavioural outcomes between groups and examined their association with cerebellar connectivity. CA patients showed deficits in social text comprehension and normal scores in the non-social text. Also, social text outcomes in controls selectively correlated with connectivity between the cerebellum and key regions subserving multi-modal semantics and social cognition, including the superior and medial temporal gyri, the temporal pole and the insula. Conversely, brain-behaviour associations involving the cerebellum were abolished in the patients. Thus, cerebellar structures and connections seem involved in processing social concepts evoked by naturalistic discourse. Such findings invite new theoretical and translational developments integrating social neuroscience with embodied semantics. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Subject(s)
Cerebellum , Temporal Lobe , Humans , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebellum/physiology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Atrophy/pathology , Neural Pathways/physiologyABSTRACT
BACKGROUND: Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS: Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS: In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION: These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Inhibition, Psychological , Neuropsychological Tests , Magnetic Resonance ImagingABSTRACT
Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Alzheimer Disease/pathology , Atrophy/pathology , Biomarkers , Brain , Frontotemporal Dementia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neurodegenerative Diseases/diagnostic imaging , Neuropsychological TestsABSTRACT
Patients with atrophy in motor brain regions exhibit selective deficits in processing action-related meanings, suggesting a link between movement conceptualization and the amount of regional tissue. Here we examine such a relation in a unique opposite model: a rare patient with a double cortex (due to subcortical band heterotopia) in primary/supplementary motor regions, and no double cortex in multimodal semantic regions. We measured behavioral performance in action- and object-concept processing as well and resting-state functional connectivity. Both dimensions involved comparisons with healthy controls. Results revealed preserved accuracy in action and object categories for the patient. However, unlike controls, the patient exhibited faster performance for action than object concepts, a difference that was uninfluenced by general cognitive abilities. Moreover, this pattern was accompanied by heightened functional connectivity between the bilateral primary motor cortices. This suggests that a functionally active double motor cortex may entail action-processing advantages. Our findings offer new constraints for models of action semantics and motor-region function at large.
Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias , Motor Cortex , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , SemanticsABSTRACT
Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled with multimodal brain measures, can complement standard approaches by revealing direct multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson's disease (n = 31) and Alzheimer's disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning and associative learning, respectively, although all three domains may be partly compromised in the other conditions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal negativity) and offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and Parkinson's disease, while unspecific learning deficits (across social and non-social conditions) were observed in Alzheimer's disease. EEG results showed increased medial frontal negativity in healthy controls during social feedback and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia. Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predominantly fronto-limbic regions in Alzheimer's disease. In contrast, non-socially reinforced learning was consistently linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson's disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle disruptions in ongoing feedback-mechanisms and social processes in Parkinson's disease and generalized learning alterations in Alzheimer's disease. This multimodal approach highlights the impact of different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced learning and neurodegeneration.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Parkinson Disease , Alzheimer Disease/pathology , Brain/pathology , Frontotemporal Dementia/pathology , Humans , Neurodegenerative Diseases/pathology , Parkinson Disease/pathologyABSTRACT
Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.