Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(44): e2216012119, 2022 11.
Article in English | MEDLINE | ID: mdl-36269868
2.
Nat Commun ; 13(1): 1133, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241655

ABSTRACT

Most sexual organisms inherit organelles from one parent, commonly by excluding organelles from the smaller gametes. However, post-mating elimination of organelles derived from one gamete ensures uniparental inheritance, where the underlying mechanisms to distinguish organelles by their origin remain obscure. Mating in Chlamydomonas reinhardtii combines isomorphic plus and minus gametes, but chloroplast DNA from minus gametes is selectively degraded in zygotes. Here, we identify OTU2p (otubain protein 2), encoded in the plus mating-type locus MT+, as the protector of plus chloroplast. Otu2p is an otubain-like deubiquitinase, which prevents proteasome-mediated degradation of the preprotein translocase of the outer chloroplast membrane (TOC) during gametogenesis. Using OTU2p-knockouts and proteasome inhibitor treatment, we successfully redirect selective DNA degradation in chloroplasts with reduced TOC levels regardless of mating type, demonstrating that plus-specific Otu2p establishes uniparental chloroplast DNA inheritance. Our work documents that a sex-linked organelle quality control mechanism drives the uniparental organelle inheritance without dimorphic gametes.


Subject(s)
Chlamydomonas reinhardtii , DNA, Chloroplast , Chlamydomonas reinhardtii/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , DNA, Chloroplast/genetics , DNA, Chloroplast/metabolism , Deubiquitinating Enzymes/metabolism , Zygote
3.
Mol Biol Cell ; 32(22)2021 12 01.
Article in English | MEDLINE | ID: mdl-34793240

ABSTRACT

It's been 50 years since Women in Cell Biology (WICB) was founded by junior women cell biologists who found themselves neither represented at the American Society for Cell Biology (ASCB) presentations nor receiving the information, mentoring, and sponsorship they needed to advance their careers. Since then, gender parity at ASCB has made significant strides: WICB has become a standing ASCB committee, women are regularly elected president of the ASCB, and half the symposia speakers are women. Many of WICB's pioneering initiatives for professional development, including career panels, workshops, awards for accomplishments in science and mentoring, and career mentoring roundtables, have been incorporated and adapted into broader "professional development" that benefits all members of ASCB. The time has passed when we can assume that all women benefit equally from progress. By strategically, thoughtfully, and honestly recognizing the challenges to women of the past and today, we may anticipate those new challenges that will arise in the next 50 years. WICB, in collaboration with the ASCB, can lead in data collection and access and can promote diversity, equity, and inclusion. This work will be a fitting homage to the women who, half a century ago, posted bathroom stall invitations to the first Women in Cell Biology meetup.


Subject(s)
Cell Biology , Societies, Scientific , Congresses as Topic , Female , Feminism , History, 20th Century , History, 21st Century , Humans , Societies, Scientific/history , Societies, Scientific/trends , United States
4.
Proc Natl Acad Sci U S A ; 116(37): 18445-18454, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31455733

ABSTRACT

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2 fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model alga Chlamydomonas that has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant's phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


Subject(s)
Carrier Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Plastids/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Starch/chemistry , Carbon/metabolism , Carbon Cycle , Chlamydomonas/metabolism , Chlamydomonas reinhardtii/genetics , Mutation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Protist ; 170(3): 287-313, 2019 07.
Article in English | MEDLINE | ID: mdl-31154072

ABSTRACT

Acidocalcisomes are membrane-enclosed organelles with acidic lumens that accumulate polyphosphate, often in granular form, and sequester calcium and metals. They carry a transmembrane polyphosphate polymerase and two classes of proton pumps: H+-pyrophosphatases (H+-PPases) and V-type ATPases. This report describes acidocalcisomes that were snap-frozen in living cells, primarily the green alga Chlamydomonas reinhardtii, and then fractured and etched (QFDEEM). Polyphosphate granules prove to be uncommon in log-phase C. reinhardtii cells and abundant in stressed cells, where they are also found within autophagy-related vacuoles. Their E (ectoplasmic) fracture face adopts a unique rugose morphology with etching, and displays ∼14nm globular domains in broken cell preparations. Using etched membrane morphology as a guide, acidocalcisomes were identified during assembly in the trans-Golgi and were recognized in QFDEEM replicas of 18 additional algae and protists. Phylogenetic analysis documents that the eukaryotic gene encoding the signature acidocalcisomal H+-PPase pump has homologues in three widespread eukaryotic clades and has been lost in opisthokonts and Amoebozoa. The eukaryotic clades are related to three functionally diverged prokaryotic PPase pumps, one of which transports Na+. Our data indicate that the Last Eukaryotic Common Ancestor (LECA) encoded two bacteria-derived pumps and one Asgard-archaea-derived pump.


Subject(s)
Eukaryota , Phylogeny , Eukaryota/ultrastructure , Organelles/ultrastructure
6.
DNA Res ; 26(4): 287-299, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31098614

ABSTRACT

Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.


Subject(s)
Cyanophora/genetics , Genome, Plant , Cyanophora/classification , Cyanophora/ultrastructure , Peptidoglycan/ultrastructure , Phylogeny
7.
mBio ; 9(5)2018 10 30.
Article in English | MEDLINE | ID: mdl-30377285

ABSTRACT

Animals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted ß-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations-the glaucophytes and cryptophytes-as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCE Membrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such as Plasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such as Plasmodium as well as approaches to the engineering of useful viscoelastic biofilms.


Subject(s)
Algal Proteins/chemistry , Alveolata/chemistry , Cryptophyta/chemistry , Euglenida/chemistry , Membrane Proteins/chemistry , Protozoan Proteins/chemistry , Alveolata/ultrastructure , Amino Acids/analysis , Cryoelectron Microscopy , Cryptophyta/ultrastructure , Euglenida/ultrastructure , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Protein Conformation , Protein Domains , Protein Multimerization
8.
Nat Microbiol ; 3(7): 781-790, 2018 07.
Article in English | MEDLINE | ID: mdl-29946165

ABSTRACT

Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients1,2. As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification3,4. Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical5,6. We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70% are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript-protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis.


Subject(s)
Bacterial Proteins/metabolism , Chlorophyta/growth & development , Phosphates/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Bioreactors/parasitology , Chlorophyta/classification , Chlorophyta/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Photosynthesis , Phylogeny , Phytoplankton
9.
Photosynth Res ; 135(1-3): 177-189, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28547584

ABSTRACT

Oxygenic phototrophs typically utilize visible light (400-700 nm) to drive photosynthesis. However, a large fraction of the energy in sunlight is contained in the far-red region, which encompasses light beyond 700 nm. In nature, certain niche environments contain high levels of this far-red light due to filtering by other phototrophs, and in these environments, organisms with photosynthetic antenna systems adapted to absorbing far-red light are able to thrive. We used selective far-red light conditions to isolate such organisms in environmental samples. One cultured organism, the Eustigmatophyte alga Forest Park Isolate 5 (FP5), is able to absorb far-red light using a chlorophyll (Chl) a-containing antenna complex, and is able to grow under solely far-red light. Here we characterize the antenna system from this organism, which is able to shift the absorption of Chl a to >705 nm.


Subject(s)
Fresh Water , Light , Plants/radiation effects , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Multiprotein Complexes/isolation & purification , Phylogeny , Pigments, Biological/metabolism , Plant Proteins/isolation & purification , Plants/ultrastructure , Spectrometry, Fluorescence
10.
Cell ; 170(6): 1059-1061, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28886378

ABSTRACT

Bacteria and eukaryotes interact in many ways-from the microbiome that educates the mammalian immune system and enhances nutrition to relationships that are commensal, symbiotic, or parasitic. Now in an unexpected twist, King and colleagues have expanded the repertoire of prokaryotic influence over eukaryotic physiology to include mating.


Subject(s)
Eukaryota , Eukaryotic Cells , Immune System/physiology , Animals , Bacteria , Mammals , Prokaryotic Cells , Reproduction
11.
Plant Cell ; 29(8): 2047-2070, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28765511

ABSTRACT

The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.


Subject(s)
Carbon Cycle , Diatoms/enzymology , Diatoms/metabolism , Gene Knockout Techniques , Nitrate Reductase/metabolism , Nitrates/metabolism , Biological Transport/drug effects , Biosynthetic Pathways/genetics , Carbon/metabolism , Carbon Cycle/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorophyll/biosynthesis , Diatoms/physiology , Diatoms/ultrastructure , Esters/metabolism , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Nitrates/pharmacology , Photosynthesis/drug effects , Protein Biosynthesis/drug effects , Thylakoids/drug effects , Thylakoids/metabolism , Transcription, Genetic/drug effects , Transcriptome/genetics , Triglycerides/metabolism , Vacuoles/drug effects , Vacuoles/metabolism
12.
Environ Microbiol ; 19(8): 3219-3234, 2017 08.
Article in English | MEDLINE | ID: mdl-28585420

ABSTRACT

Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml-1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml-1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml-1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml-1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml-1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters.


Subject(s)
Chlorophyta/classification , Geography , Phytoplankton/classification , Seasons , Chlorophyll/analysis , Ecotype , Environment , Oceans and Seas , Phylogeny , Seawater
13.
Proc Natl Acad Sci U S A ; 113(27): 7673-8, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27335457

ABSTRACT

To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.


Subject(s)
Chlamydomonas reinhardtii/radiation effects , Light-Harvesting Protein Complexes/radiation effects , Fluorescence , Hydrogen-Ion Concentration
14.
Proc Natl Acad Sci U S A ; 113(21): 5958-63, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27166422

ABSTRACT

Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.


Subject(s)
Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/enzymology , Organelles/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Chlamydomonas reinhardtii/genetics , Organelles/genetics , Ribulose-Bisphosphate Carboxylase/genetics
15.
Eukaryot Cell ; 14(10): 1017-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253157

ABSTRACT

Eisosomes are among the few remaining eukaryotic cellular differentations that lack a defined function(s). These trough-shaped invaginations of the plasma membrane have largely been studied in Saccharomyces cerevisiae, in which their associated proteins, including two BAR domain proteins, have been identified, and homologues have been found throughout the fungal radiation. Using quick-freeze deep-etch electron microscopy to generate high-resolution replicas of membrane fracture faces without the use of chemical fixation, we report that eisosomes are also present in a subset of red and green microalgae as well as in the cysts of the ciliate Euplotes. Eisosome assembly is closely correlated with both the presence and the nature of cell walls. Microalgal eisosomes vary extensively in topology and internal organization. Unlike fungi, their convex fracture faces can carry lineage-specific arrays of intramembranous particles, and their concave fracture faces usually display fine striations, also seen in fungi, that are pitched at lineage-specific angles and, in some cases, adopt a broad-banded patterning. The conserved genes that encode fungal eisosome-associated proteins are not found in sequenced algal genomes, but we identified genes encoding two algal lineage-specific families of predicted BAR domain proteins, called Green-BAR and Red-BAR, that are candidate eisosome organizers. We propose a model for eisosome formation wherein (i) positively charged recognition patches first establish contact with target membrane regions and (ii) a (partial) unwinding of the coiled-coil conformation of the BAR domains then allows interactions between the hydrophobic faces of their amphipathic helices and the lipid phase of the inner membrane leaflet, generating the striated patterns.


Subject(s)
Cell Membrane/physiology , Cell Surface Extensions/ultrastructure , Fungi/physiology , Lichens/physiology , Microalgae/physiology , Cell Surface Extensions/genetics , Cytoplasm/physiology , Membrane Proteins/metabolism , Protein Structure, Tertiary
16.
Plant J ; 82(3): 365-369, 2015 May.
Article in English | MEDLINE | ID: mdl-25690325

ABSTRACT

During the period 1950-1970, groundbreaking research on the genetic mapping of Chlamydomonas reinhardtii and the use of mutant strains to analyze photosynthesis was conducted in the laboratory of R. Paul Levine at Harvard University. An account of this era, based in part on interviews with Levine, is presented.


Subject(s)
Chlamydomonas , Research/history , Chlamydomonas reinhardtii/genetics , History, 20th Century , Mutation
17.
ISME J ; 9(5): 1076-92, 2015 May.
Article in English | MEDLINE | ID: mdl-25333462

ABSTRACT

Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-µm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.


Subject(s)
Chlorophyll/analysis , Genome, Bacterial , Metagenomics , Prochlorococcus/genetics , Seawater/microbiology , Aquatic Organisms/classification , Aquatic Organisms/genetics , Bacteria/classification , Bacteria/genetics , California , Carbon Dioxide/chemistry , Chlorophyll A , Gene Expression , Gene Expression Profiling , Genetic Variation , Haptophyta/genetics , Light , Nitrates/chemistry , Pacific Ocean , Synechococcus/genetics , Transcriptome
18.
Eukaryot Cell ; 13(11): 1450-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25239976

ABSTRACT

Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (~75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.


Subject(s)
Cell Wall/ultrastructure , Stramenopiles/ultrastructure , Amino Acid Sequence , Amino Acids/analysis , Aquatic Organisms/ultrastructure , Base Sequence , Microscopy, Electron , Sequence Analysis, DNA , Spectroscopy, Fourier Transform Infrared , Stramenopiles/enzymology , Stramenopiles/genetics
19.
Plant Cell ; 26(5): 2201-2222, 2014 May.
Article in English | MEDLINE | ID: mdl-24879428

ABSTRACT

Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.

20.
Article in English | MEDLINE | ID: mdl-24591519

ABSTRACT

Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.


Subject(s)
Biological Evolution , Eukaryota/physiology , Fertilization , Genetic Speciation , Meiosis , Ploidies , Reproduction , Sex Determination Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...