Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33914855

ABSTRACT

The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1ß (IL-1ß), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell-intrinsic competitive advantage; rather chronic IL-1ß exposure engendered potent selection for Cebpa loss. Chronic IL-1ß augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1ß, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Interleukin-1beta/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Cell Lineage/physiology , Gene Expression/physiology , HEK293 Cells , Hematopoietic Stem Cell Transplantation/methods , Humans , Inflammation/metabolism , Leukemia, Myelomonocytic, Acute/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism
2.
Mol Pharmacol ; 99(6): 435-447, 2021 06.
Article in English | MEDLINE | ID: mdl-33795352

ABSTRACT

Rearranged during transfection (RET) rearrangements occur in 1% to 2% of lung adenocarcinomas as well as other malignancies and are now established targets for tyrosine kinase inhibitors. We developed three novel RET fusion-positive (RET+) patient-derived cancer cell lines, CUTO22 [kinesin 5B (KIF5B)-RET fusion], CUTO32 (KIF5B-RET fusion), and CUTO42 (echinoderm microtubule-associated protein-like 4-RET fusion), to study RET signaling and response to therapy. We confirmed each of our cell lines expresses the RET fusion protein and assessed their sensitivity to RET inhibitors. We found that the CUTO22 and CUTO42 cell lines were sensitive to multiple RET inhibitors, whereas the CUTO32 cell line was >10-fold more resistant to three RET inhibitors. We discovered that our RET+ cell lines had differential regulation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/protein kinase B (AKT) pathways. After inhibition of RET, the CUTO42 cells had robust inhibition of phosphorylated AKT (pAKT), whereas CUTO22 and CUTO32 cells had sustained AKT activation. Next, we performed a drug screen, which revealed that the CUTO32 cells were sensitive (<1 nM IC50) to inhibition of two cell cycle-regulating proteins, polo-like kinase 1 and Aurora kinase A. Finally, we show that two of these cell lines, CUTO32 and CUTO42, successfully establish xenografted tumors in nude mice. We demonstrated that the RET inhibitor BLU-667 was effective at inhibiting tumor growth in CUTO42 tumors but had a much less profound effect in CUTO32 tumors, consistent with our in vitro experiments. These data highlight the utility of new RET+ models to elucidate differences in response to tyrosine kinase inhibitors and downstream signaling regulation. Our RET+ cell lines effectively recapitulate the interpatient heterogeneity observed in response to RET inhibitors and reveal opportunities for alternative or combination therapies. SIGNIFICANCE STATEMENT: We have derived and characterized three novel rearranged during transfection (RET) fusion non-small cell lung cancer cell lines and demonstrated that they have differential responses to RET inhibition as well as regulation of downstream signaling, an area that has previously been limited by a lack of diverse cell line modes with endogenous RET fusions. These data offer important insight into regulation of response to RET tyrosine kinase inhibitors and other potential therapeutic targets.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Signal Transduction , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Proto-Oncogene Proteins c-ret/genetics , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL