Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Molecules ; 29(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542870

ABSTRACT

Protein kinase B (PKB) or AKT protein is an important target for cancer treatment. Significant advances have been made in developing ATP-competitive inhibitors and allosteric binders targeting AKT1. However, adverse effects or toxicities have been found, and the cutaneous toxicity was found to be linked to the inhibition of AKT2. Thus, selective inhibition of AKT inhibitors is of significance. Our work, using the Schrödinger Covalent Dock (CovDock) program and the Movable Type (MT)-based free energy calculation (ΔG), yielded small mean errors for the experimentally derived binding free energy (ΔG). The docking data suggested that AKT1 binding may require residues Asn54, Trp80, Tyr272, Asp274, and Asp292, whereas AKT2 binding would expect residues Phe163 and Glu279, and AKT3 binding would favor residues Glu17, Trp79, Phe306, and Glu295. These findings may help guide AKT1-selective or AKT3-selective molecular design while sparing the inhibition of AKT2 to minimize the cutaneous toxicity.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Angiogenesis Inhibitors
2.
NanoImpact ; 32: 100486, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37777181

ABSTRACT

Carbon nanotubes (CNTs) are promising nanomaterials exhibiting high thermal and electrical conductivities, significant stiffness, and high tensile strength. As a result, CNTs have been utilized as additives to enhance properties of various polymeric materials in a broad range of fields. In this study, we investigated the release of CNTs from CNT epoxy nanocomposites exposed to environmental weathering and mechanical stresses. The presence and amount of CNTs released from degraded polymer nanocomposites is important because CNTs can impact physiological systems in humans and environmental organisms. The weathering experiments in this study included nanocomposite exposure to both UV and a water spray, to simulate sunlight and rain exposure, whereas mechanical stresses were induced by shaking and ultrasonication. CNT release from epoxy nanocomposites was quantified by a 14C-labeling method that enabled measurement of the CNT release rates after different weathering and mechanical treatments. In this study, a sample oxidizer was used prior to liquid scintillation counting, because it was shown to reduce interferences from the presence of polymeric materials and achieve a high recovery (95%). Polymer nanocomposite degradation was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and light microscopy. A continuous release of 14C-labeled nanomaterials was observed after each UV and simulated rain exposure period, with 0.23% (mass/mass) of the total embedded mass of CNTs being released from the CNT nanocomposite during the full weathering process, suggesting that the water spray induced sufficient mechanical stress to eliminate the protective effect of the surface agglomerated CNT network. Importantly, additional mechanical stresses imposed on the weathered nanocomposites by shaking and ultrasonication resulted in further release of approximately 0.27% (mass /mass).


Subject(s)
Nanocomposites , Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Nanocomposites/chemistry , Environmental Exposure , Polymers/chemistry , Water
3.
Environ Int ; 173: 107650, 2023 03.
Article in English | MEDLINE | ID: mdl-36848829

ABSTRACT

Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.


Subject(s)
Fullerenes , Graphite , Nanotubes, Carbon , Nanotubes, Carbon/toxicity , Microplastics , Bioaccumulation
4.
Sci Adv ; 8(49): eabq4244, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36475803

ABSTRACT

Developing fast, robust, and accurate methods for optimal control of quantum systems comprising interacting particles is one of the most active areas of current science. Although a valuable repository of algorithms is available for numerical applications in quantum control, the high computational cost is somewhat overlooked. Here, we present a fast and accurate optimal control algorithm for systems of interacting qubits, QOALA (quantum optimal control by adaptive low-cost algorithm), which is predicted to offer [Formula: see text](M2) speedup for an M-qubit system, compared to the state-of-the-art exact methods, without compromising overall accuracy of the optimal solution. The method is general and compatible with diverse Hamiltonian structures. The proposed approach uses inexpensive low-accuracy approximations of propagators far from the optimum, adaptively switching to higher accuracy, higher-cost propagators when approaching the optimum. In addition, the utilization of analytical Lie algebraic derivatives that do not require computationally expensive matrix exponential brings even better performance.

5.
Chem Commun (Camb) ; 58(76): 10715-10718, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36069298

ABSTRACT

To address the problems of instrumental imperfection and time-consuming experimental setup in electron spin resonance (ESR), we present ESR-POISE, a user-friendly software package for fully automated and fast on-the-fly optimisation and acquisition of ESR experiments. This open-source package interfaces with Bruker's Xepr software and allows scientists to run user-defined optimisations.


Subject(s)
Software , Electron Spin Resonance Spectroscopy/methods
6.
J Magn Reson ; 336: 107152, 2022 03.
Article in English | MEDLINE | ID: mdl-35189510

ABSTRACT

Conventional refocusing pulses are optimised for a single spin without considering any type of coupling. However, despite the fact that most couplings will result in undesired distortions, refocusing in delay-pulse-delay-type sequences with desired heteronuclear coherence transfer might be enhanced considerably by including coupling evolution into pulse design. We provide a proof of principle study for a Hydrogen-Carbon refocusing pulse sandwich with inherent J-evolution following the previously reported ICEBERG-principle with improved performance in terms of refocusing performance and/or overall effective coherence transfer time. Pulses are optimised using optimal control theory with a newly derived quality factor and z-controls as an efficient tool to speed up calculations. Pulses are characterised in theory and experiment and compared to conventional concurrent refocusing pulses, clearly showing an improvement for the J-evolving pulse sandwich. As a side-product, also efficient J-compensated resfocusing pulse sandwiches - termed BUBU pulses following the nomenclature of previous J-compensated BUBI and BEBEtr pulse sandwiches - have been optimised.

7.
Magn Reson (Gott) ; 3(1): 53-63, 2022.
Article in English | MEDLINE | ID: mdl-37905174

ABSTRACT

A novel type of efficient broadband pulse, called second-order phase dispersion by optimised rotation (SORDOR), has recently been introduced. In contrast to adiabatic excitation, SORDOR-90 pulses provide effective transverse 90∘ rotations throughout their bandwidth, with a quadratic offset dependence of the phase in the x,y plane. Together with phase-matched SORDOR-180 pulses, this enables the Böhlen-Bodenhausen broadband refocusing approach for linearly frequency-swept pulses to be extended to any type of 90∘/180∘ pulse-delay sequence. Example pulse shapes are characterised in theory and experiment, and an example application is given with a 19F-PROJECT experiment for measuring relaxation times with reduced distortions due to J-coupling evolution.

8.
J Magn Reson ; 333: 107094, 2021 12.
Article in English | MEDLINE | ID: mdl-34794089

ABSTRACT

We have recently demonstrated supervised deep learning methods for rapid generation of radiofrequency pulses in magnetic resonance imaging (https://doi.org/10.1002/mrm.27740, https://doi.org/10.1002/mrm.28667). Unlike the previous iterative optimization approaches, deep learning methods generate a pulse using a fixed number of floating-point operations - this is important in MRI, where patient-specific pulses preferably must be produced in real time. However, deep learning requires vast training libraries, which must be generated using the traditional methods, e.g., iterative quantum optimal control methods. Those methods are usually variations of gradient descent, and the calculation of the gradient of the performance metric with respect to the pulse waveform can be the most numerically intensive step. In this communication, we explore various ways in which the calculation of gradients in quantum optimal control theory may be accelerated. Four optimization avenues are explored: truncated commutator series expansions at zeroth and first order, a novel midpoint truncation scheme at first order, and the exact complex-step method. For the spin systems relevant to MRI, the first-order midpoint truncation is found to be sufficiently accurate, but also significantly faster than the machine precision gradient. This makes the generation of training databases for the machine learning methods considerably more realistic.

9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972441

ABSTRACT

Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.


Subject(s)
Immune System/innervation , Immunomodulation/drug effects , Spleen/immunology , Sympathetic Nervous System/immunology , Vagus Nerve/immunology , Animals , Female , Gene Expression , Humans , Immune System/drug effects , Inflammation , Interleukin-6/genetics , Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Mice , Microcirculation/drug effects , Microcirculation/genetics , Microcirculation/immunology , Norepinephrine/pharmacology , Rats , Species Specificity , Spleen/drug effects , Spleen/innervation , Spleen/pathology , Swine , Sympathetic Nervous System/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vagus Nerve/drug effects , Vagus Nerve Stimulation/methods
10.
Equine Vet J ; 53(6): 1188-1198, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33338316

ABSTRACT

BACKGROUND: Horses are affected by various peripheral nerve disorders but defining their aetiology and pathophysiology is hampered by limited understanding of associated morphological and pathological changes and involvement of specific axonal types. OBJECTIVES: To investigate the hypothesis that selected antibody markers, used in conjunction with various tissue processing methods, would enable identification of axons with different functional modalities within a range of equine peripheral nerves. STUDY DESIGN: Optimisation and validation study. METHODS: A range of antibodies were evaluated immunohistochemically via fluorescence confocal microscopy in cadaver equine nerve samples of primary motor, mixed or primary sensory functions (recurrent laryngeal, phrenic and plantar digital) within formalin-fixed paraffin-embedded (FFPE) and formalin-fixed frozen (FFF) tissues subjected to different antigen retrieval protocols. RESULTS: Immunohistochemistry of FFPE-derived nerve samples with selected antibodies and specific antigen retrieval methods enabled identification of myelinated and unmyelinated axons, cholinergic, sympathetic and peptidergic axons. The recurrent laryngeal and phrenic nerves are composed of myelinated cholinergic (motor), myelinated sensory fibres, unmyelinated adrenergic (sympathetic) axons and unmyelinated peptidergic (sensory) axons. In contrast, as expected, the plantar digital nerve had no myelinated motor fibres being mainly composed of myelinated sensory fibres, unmyelinated sympathetic and unmyelinated peptidergic sensory axons. MAIN LIMITATION: Attempts specifically to label parasympathetic fibres were unsuccessful in any nerve examined in both FFPE and FFF tissues. CONCLUSIONS: A panel of antibody markers can be used to reveal morphological and functional properties of equine nerves. Future work should enable better characterisation of morphological changes in equine neuropathies at various stages of disease development.


Subject(s)
Axons , Nerve Fibers, Myelinated , Animals , Horses , Immunohistochemistry , Peripheral Nerves
11.
NanoImpact ; 172020.
Article in English | MEDLINE | ID: mdl-33029568

ABSTRACT

Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.

12.
Chem Rev ; 120(20): 11651-11697, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32960589

ABSTRACT

Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be unintentionally formed or modified after CNTs are released into the environment through exposure to reactive oxygen species and/or ultraviolet irradiation. Consequently, it is important to understand the impact of CNT surface oxidation on the environmental fate, transport, and toxicity of CNTs. In this review, we describe the specific role of oxygen-containing functional groups on the important environmental behaviors of CNTs in aqueous media (e.g., colloidal stability, adsorption, and photochemistry) as well as their biological impact. We place special emphasis on the value of systematically varying and quantifying surface oxides as a route to identifying quantitative structure-property relationships. The role of oxygen-containing functional groups in regulating the efficacy of CNT-enabled water treatment technologies and the influence of surface oxides on other carbon-based nanomaterials are also evaluated and discussed.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Humans , Oxides/chemistry , Oxides/metabolism , Oxygen/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology
13.
Sci Total Environ ; 742: 140512, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32721719

ABSTRACT

The interaction of anaerobic microorganisms with carbon nanotube/polymer nanocomposites (CNT/PNC) will play a major role in determining their persistence and environmental fate at the end of consumer use when these nano-enabled materials enter landfills and encounter wastewater. Motivated by the need to understand how different parameters (i.e., polymer type, microbial phenotype, CNT characteristics) influence CNT/PNC biodegradation rates, we have used volumetric biogas measurements and kinetic modeling to study biodegradation as a function of polymer type and CNT properties. In one set of experiments, oxidized multiwall carbon nanotubes (O-MWCNTs) with a range of CNT loadings 0-5% w/w were incorporated into poly-ε-caprolactone (PCL) and polyhydroxyalkanoates (PHA) matrices and subjected to biodegradation by an anaerobic microbial community. For each CNT/PNC, complete polymer biodegradation was ultimately observed, although the rate of biodegradation was inhibited above certain critical CNT loadings dependent upon the polymer type. Higher loadings of pristine MWCNTs were needed to decrease the rate of polymer biodegradation compared to O-MWCNTs, an effect ascribed principally to differences in CNT dispersion within the polymer matrices. Above certain CNT loadings, a CNT mat of similar shape to the initial PNC was formed after polymer biodegradation, while below this threshold, CNT aggregates fragmented in the media. In situations where biodegradation was rapid, methanogen growth was disproportionately inhibited compared to the overall microbial community. Analysis of the results obtained from this study indicates that the inhibitory effect of CNTs on polymer biodegradation rate is greatest under conditions (i.e., polymer type, microbial phenotype, CNT dispersion) where biodegradation of the neat polymer is slowest. This new insight provides a means to predict the environmental fate, persistence, and transformations of CNT-enabled polymer materials.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Biodegradation, Environmental , Polymers
14.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722058

ABSTRACT

Nanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel. Potential limitations of different wheels include the release of fragments from the wheel during abrasion, wearing of the wheel from the abrasion process, or not releasing a sufficient number of particles for accurate quantitative analysis. In this study, we evaluated five different wheels, including a typically used silicon oxide-based commercial wheel and four wheels fabricated at the National Institute of Standards and Technology (NIST), for their application in nanocoating abrasion studies. A rapid, nondestructive laser scanning confocal microscopy method was developed and used to identify released particles on the abraded surfaces. NIST fabricated a high performing wheel: a noncorrosive, stainless-steel abrasion wheel containing a deep cross-patch. This wheel worked well under both wet and dry conditions, did not corrode in aqueous media, did not release particles from itself, and yielded higher numbers of released particles. These results can be used to help develop a standardized protocol for surface release of particles from nanoenabled products using a commercial rotary Taber abraser.

15.
Polym Degrad Stab ; 1822020 Dec.
Article in English | MEDLINE | ID: mdl-36936609

ABSTRACT

The ultraviolet (UV)-induced degradation of graphene/polymer nanocomposites was investigated in this study. Specifically, the effect of few-layer graphene nanofillers on the degradation of a thermoplastic polyurethane (TPU) and the release potential of graphene from the degraded nanocomposite surfaces were assessed. Graphene/TPU (G/TPU) nanocomposites and neat TPU were UV-exposed under both dry and humid conditions in the NIST SPHERE, a precisely controlled, high intensity UV-weathering device. Neat TPU and G/TPU were characterized over the time course of UV exposure using color measurements and infrared spectroscopy, for appearance and chemical changes, respectively. Changes in thickness and surface morphology were obtained with scanning electron microscopy. A new fluorescence quenching measurement approach was developed to identify graphene sheets at the nanocomposite surface, which was supported by contact angle measurements. The potential for graphene release from the nanocomposite surface was evaluated using a tape-lift method followed by microscopy of any particles present on the tape. The findings suggest that graphene improves the service life of TPU with respect to UV exposure, but that graphene becomes exposed at the nanocomposite surface over time, which may potentially lead to its release when exposed to small mechanical forces or upon contact with other materials.

16.
NanoImpact ; 192020.
Article in English | MEDLINE | ID: mdl-33506141

ABSTRACT

The extent to which hydrophilic GO nanofillers regulate polymer degradation during exposure to a combination of ultraviolet (UV) radiation and moisture is presently unknown. Accordingly, this study systematically evaluated the effect of GO on polymer degradability under both humid UV and dry UV conditions. Both GO accumulation at the polymer nanocomposite (PNC) surface and GO release following degradation were also investigated. Different mass loadings of GO were incorporated into waterborne polyurethane (WBPU), a commonly used exterior coating, and the resulting GO/WBPU nanocomposites were exposed to precisely controlled accelerated weathering conditions using the NIST Simulated Photodegradation via High Energy Radiant Exposure (SPHERE) device. Thickness loss and infrared spectroscopy measurements indicated GO slightly improved the durability of WBPU under dry UV conditions but not under humid UV conditions. Raman spectroscopy, scanning electron microscopy, and atomic force microscopy modulus measurements indicated that GO accumulation occurred at and near the PNC surface under both conditions but to a more rapid extent under humid UV conditions. Minimal GO release occurred under dry UV conditions as measured with Raman spectroscopy of aqueous run-off from a simulated rain spray applied to degraded PNCs. In contrast, PNC surface transformations under humid UV conditions suggested that GO release occurred.

17.
Muscle Nerve ; 60(6): 762-768, 2019 12.
Article in English | MEDLINE | ID: mdl-31498901

ABSTRACT

INTRODUCTION: Equine recurrent laryngeal neuropathy (RLN) is a naturally occurring model of length-dependent axonopathy characterized by asymmetrical degeneration of recurrent laryngeal nerve axons (RLn). Distal RLn degeneration is marked, but it is unclear whether degeneration extends to include cell bodies (consistent with a neuronopathy). METHODS: With examiners blinded to RLN severity, brainstem location, and side, we examined correlations between RLN severity (assessed using left distal RLn myelinated axon count) and histopathological features (including chromatolysis and glial responses) in the nucleus ambiguus cell bodies, and myelinated axon count of the right distal RLn of 16 horses. RESULTS: RLN severity was not associated with RLn cell body number (P > .05), or degeneration. A positive correlation between the left and right distal RLn myelinated axon counts was identified (R2 = 0.57, P < .05). DISCUSSION: We confirm that RLN, a length-dependent distal axonopathy, occurs in the absence of detectable neuronopathy.


Subject(s)
Cell Body/pathology , Medulla Oblongata/pathology , Nerve Fibers, Myelinated/pathology , Neurons/pathology , Recurrent Laryngeal Nerve/pathology , Vocal Cord Paralysis/pathology , Animals , Atrophy , Cell Count , Horses , Recurrent Laryngeal Nerve/physiopathology , Vocal Cord Paralysis/physiopathology
18.
Article in English | MEDLINE | ID: mdl-31437088

ABSTRACT

Potential consumer exposure to nanoparticles (NPs) from nanoenabled food contact materials (FCMs) has been a driving force for migration studies of NPs from FCMs. Although NP migration from fresh, unused FCMs was not previously observed, conditions that result in significant changes to the surface of FCMs have not been investigated for NP migration into food. Therefore, a quantitative assessment of nanoparticle release from commercially available nanosilver-enabled FCMs was performed using an abrasion protocol to simulate cleaning, cutting, scraping and other stressful use conditions. Laser scanning confocal microscopy (LSCM) analysis showed a general increase in root mean square (RMS) roughness after FCM abrasion, and particle count (for particle sizes from 80 nm to 960 nm) at the surface was 4 orders of magnitude higher for the abraded FCMs. Migration was evaluated using both water and 3% (v/v, volume fraction) acetic acid as food simulants. Low concentrations of total Ag were detected in water simulants with a small portion (<10 ng dm-2) in the form of silver nanoparticles (AgNPs). Median particle diameter ranged from 39 nm to 50 nm with particle number concentrations on the order of 106 particles dm- 2. Total Ag migration into 3% (v/v) acetic acid was significantly higher than in water; however, 3% (v/v) acetic acid was not suitable for evaluation of NP release due to dissolution of AgNPs to Ag+ under acidic solution chemistries.


Subject(s)
Food Contamination/analysis , Food Packaging , Metal Nanoparticles/analysis , Silver/analysis , Water/chemistry
19.
J Exp Biol ; 222(Pt 13)2019 07 10.
Article in English | MEDLINE | ID: mdl-31221738

ABSTRACT

Active muscle performs various mechanical functions during locomotion: work output during shortening, work absorption when resisting (but not preventing) lengthening, and impulse (force-time integral) whenever there is active force. The energetic costs of these functions are important components in the energy budget during locomotion. We investigated how the pattern of stimulation and movement affects the mechanics and energetics of muscle fibre bundles isolated from wild rabbits (Oryctolagus cuniculus). The fibres were from muscles consisting of mainly fast-twitch, type 2 fibres. Fibre length was held constant (isometric) or a sinusoidal pattern of movement was imposed at a frequency similar to the stride frequency of running wild rabbits. Duty cycle (stimulation duration×movement frequency) and phase (timing of stimulation relative to movement) were varied. Work and impulse were measured as well as energy produced as heat. The sum of net work (work output-work input) and heat was taken as a measure of energetic cost. Maximum work output was produced with a long duty cycle and stimulation starting slightly before shortening, and was produced quite efficiently. However, efficiency was even higher with other stimulation patterns that produced less work. The highest impulse (considerably higher than isometric impulse) was produced when stimulation started while the muscle fibres were being lengthened. High impulse was produced very economically because of the low cost of producing force during lengthening. Thus, locomotion demanding high work, high impulse or economical work output or impulse requires a distinct pattern of stimulation and movement.


Subject(s)
Energy Metabolism/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Rabbits/physiology , Animals , Biomechanical Phenomena , Female , Male , Thermogenesis/physiology
20.
Article in English | MEDLINE | ID: mdl-33209188

ABSTRACT

Potential consumer exposure to nanoparticles (NPs) from nanoenabled food contact materials (FCMs) has been a driving force for migration studies of NPs from FCMs. Although NP migration from fresh, unused FCMs was not previously observed, conditions that result in significant changes to the surface of FCMs have not been investigated for NP migration into food. Therefore, a quantitative assessment of nanoparticle release from commercially available nanosilver-enabled FCMs was performed using an abrasion protocol to simulate cleaning, cutting, scraping and other stressful use conditions. Laser scanning confocal microscopy (LSCM) analysis showed a general increase in root mean square (RMS) roughness after FCM abrasion, and particle count (for particle sizes from 80 nm to 960 nm) at the surface was 4 orders of magnitude higher for the abraded FCMs. Migration was evaluated using both water and 3% (v/v, volume fraction) acetic acid as food simulants. Low concentrations of total Ag were detected in water simulants with a small portion (<10 ng dm-2) in the form of silver nanoparticles (AgNPs). Median particle diameter ranged from 39 nm to 50 nm with particle number concentrations on the order of 106 particles dm- 2. Total Ag migration into 3% (v/v) acetic acid was significantly higher than in water; however, 3% (v/v) acetic acid was not suitable for evaluation of NP release due to dissolution of AgNPs to Ag+ under acidic solution chemistries.


Subject(s)
Food Contamination/analysis , Food Packaging , Metal Nanoparticles/analysis , Silver/analysis , Acetic Acid , Anti-Infective Agents/analysis , Anti-Infective Agents/toxicity , Food Safety , Humans , Metal Nanoparticles/toxicity , Microscopy, Confocal , Nanocomposites/analysis , Nanocomposites/toxicity , Particle Size , Silver/toxicity , Surface Properties , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...