Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Synth Biol (Oxf) ; 8(1): ysad005, 2023.
Article in English | MEDLINE | ID: mdl-37073283

ABSTRACT

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.

2.
Synth Biol (Oxf) ; 7(1): ysac018, 2022.
Article in English | MEDLINE | ID: mdl-36285185

ABSTRACT

We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency's Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. Graphical Abstract.

3.
JCO Clin Cancer Inform ; 4: 472-479, 2020 05.
Article in English | MEDLINE | ID: mdl-32453635

ABSTRACT

PURPOSE: Institutional efforts toward the democratization of cloud-scale data and analysis methods for cancer genomics are proceeding rapidly. As part of this effort, we bridge two major bioinformatic initiatives: the Global Alliance for Genomics and Health (GA4GH) and Bioconductor. METHODS: We describe in detail a use case in pancancer transcriptomics conducted by blending implementations of the GA4GH Workflow Execution Services and Tool Registry Service concepts with the Bioconductor curatedTCGAData and BiocOncoTK packages. RESULTS: We carried out the analysis with a formally archived workflow and container at dockstore.org and a workspace and notebook at app.terra.bio. The analysis identified relationships between microsatellite instability and biomarkers of immune dysregulation at a finer level of granularity than previously reported. Our use of standard approaches to containerization and workflow programming allows this analysis to be replicated and extended. CONCLUSION: Experimental use of dockstore.org and app.terra.bio in concert with Bioconductor enabled novel statistical analysis of large genomic projects without the need for local supercomputing resources but involved challenges related to container design, script archiving, and unit testing. Best practices and cost/benefit metrics for the management and analysis of globally federated genomic data and annotation are evolving. The creation and execution of use cases like the one reported here will be helpful in the development and comparison of approaches to federated data/analysis systems in cancer genomics.


Subject(s)
Neoplasms , Software , Computational Biology , Genomics , Humans , Neoplasms/genetics , Workflow
4.
F1000Res ; 8: 152, 2019.
Article in English | MEDLINE | ID: mdl-31297189

ABSTRACT

DNA transcription is intrinsically complex. Bioinformatic work with transcription factors (TFs) is complicated by a multiplicity of data resources and annotations. The Bioconductor package TFutils includes data structures and functions to enhance the precision and utility of integrative analyses that have components involving TFs. TFutils provides catalogs of human TFs from three reference sources (CISBP, HOCOMOCO, and GO), a catalog of TF targets derived from MSigDb, and multiple approaches to enumerating TF binding sites, including an interface to results of 690 ENCODE experiments. Aspects of integration of TF binding patterns and genome-wide association study results are explored in examples.


Subject(s)
Computational Biology , Databases, Genetic , Gene Expression Regulation , Genome-Wide Association Study , Humans , Transcription Factors
5.
F1000Res ; 8: 21, 2019.
Article in English | MEDLINE | ID: mdl-30828438

ABSTRACT

Bioconductor's SummarizedExperiment class unites numerical assay quantifications with sample- and experiment-level metadata.  SummarizedExperiment is the standard Bioconductor class for assays that produce matrix-like data, used by over 200 packages.  We describe the restfulSE package, a deployment of  this data model that supports remote storage.  We illustrate use of SummarizedExperiment with remote HDF5 and Google BigQuery back ends, with two applications in cancer genomics.  Our intent is to allow the use of familiar and semantically meaningful programmatic idioms to query genomic data, while abstracting the remote interface from end users and developers.


Subject(s)
Genomics , Software , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...