Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Rep ; 8: 296-301, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28367506

ABSTRACT

Expression of the mTORC1 repressor, Regulated in DNA Damage and Development 1 (REDD1), is elevated in skeletal muscle during various catabolic conditions including fasting, hindlimb immobilization, and sepsis. Conversely, REDD1 expression is suppressed by anabolic stimuli such as resistance exercise or nutrient consumption following a fast. Though it is known that nutrient consumption reduces REDD1 expression, it is largely unknown how nutrients and hormones individually contribute to the reduction in REDD1 expression. Therefore, the purpose of the present study was to determine how nutrients and hormones individually regulate REDD1 expression. HeLa cells were deprived of leucine or serum for 10 hours, after which either leucine or serum was reintroduced to cell culture medium for 60 minutes. Re-supplementation of either leucine or serum resulted in a reduction in REDD1 protein levels by 34.8 ± 5.8% and 54.1 ± 3.4%, respectively, compared to the deprived conditions. Re-supplementation of leucine or serum to deprived cells also led to a reduction in REDD1 mRNA content by 49.1% ± 2.7% and 65.0 ± 1.4%, respectively, compared to the deprived conditions. Interestingly, rates of REDD1 protein degradation were unaffected by either leucine or serum re-supplementation, as assessed in cells treated with cycloheximide to block protein synthesis. Likewise, addition of leucine or serum to cells treated with Actinomycin D to inhibit gene transcription failed to alter the rate of REDD1 mRNA degradation. The data indicate that the leucine or serum-induced suppression of REDD1 expression occurs independent of changes in the rate of degradation of either the REDD1 protein or mRNA. Thus, the leucine- or serum-induced suppression likely occurs through alternative mechanism(s) such as reduced REDD1 gene transcription and/or mRNA translation.

2.
J Nutr ; 145(11): 2496-502, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26400964

ABSTRACT

BACKGROUND: The chronic activation of the mechanistic (mammalian) target of rapamycin in complex 1 (mTORC1) in response to excess nutrients contributes to obesity-associated pathologies. OBJECTIVE: To understand the initial events that ultimately lead to obesity-associated pathologies, the present study assessed mTORC1 responses in the liver after a relatively short exposure to a high-fat diet (HFD). METHODS: Male, obesity-prone rats were meal-trained to consume either a control (CON; 10% of energy from fat) diet or an HFD (60% of energy from fat) for 2 wk. Livers were collected and analyzed for mTORC1 signaling [assessed by changes in phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1)] and potential regulatory mechanisms, including changes in the association of Ras-related GTP binding (Rag) A and RagC with mechanistic target of rapamycin (mTOR) and expression of Sestrin1, Sestrin2, and Sestrin3. RESULTS: Feeding-induced activation of mTORC1 was blunted in the livers of rats fed the HFD compared with those fed the CON diet (p70S6K1 phosphorylation, 19% of CON; 4E-BP1 phosphorylation, 61% of CON). The attenuated response was not due to a change in a kinase also referred to as protein kinase B (Akt) signaling but rather to resistance to amino acid-induced activation of mTORC1, as evidenced by a reduction in the interaction of RagA (69% of CON) and RagC (66% of CON) with mTOR and enhanced expression of the mTORC1 repressors Sestrin2 (132% of CON) and Sestrin3 (143% of CON). The consumption of an HFD led to impaired amino acid-induced activation of mTORC1 as assessed in livers perfused in situ with medium containing various concentrations of amino acids. CONCLUSIONS: These results in rats support a model in which the initial response of the liver to an HFD is an attenuation of, rather than the expected activation of, mTORC1. The initial response likely represents a counterregulatory mechanism to handle the onset of excess nutrients and is caused by enhanced expression of Sestrin2 and Sestrin3, which, in turn, leads to impaired Rag signaling, resulting in resistance to amino acid-induced activation of mTORC1.


Subject(s)
Amino Acids/pharmacology , Diet, High-Fat/adverse effects , Liver/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Blood Glucose/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Immunoprecipitation , Male , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/drug therapy , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL