Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13939, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558805

ABSTRACT

The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.


Subject(s)
Brevican/metabolism , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Nerve Tissue Proteins/metabolism , Proteoglycans/metabolism , Tenascin/metabolism , Animals , Brevican/genetics , CA2 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/physiology , Cells, Cultured , Female , Gene Deletion , Male , Mice , Nerve Tissue Proteins/genetics , Neurocan , Proteoglycans/genetics , Synapses/metabolism , Synapses/physiology , Tenascin/genetics
2.
Hippocampus ; 27(8): 920-933, 2017 08.
Article in English | MEDLINE | ID: mdl-28512860

ABSTRACT

Hippocampal synaptic plasticity comprises a key cellular mechanism for information storage. In the hippocampus, both long-term potentiation (LTP) and long-term depression (LTD) are triggered by synaptic Ca2+ -elevations that are typically mediated by the opening of voltage-gated cation channels, such as N-methyl-d-aspartate receptors (NMDAR), in the postsynaptic density. The integrity of the post-synaptic density is ensured by the extracellular matrix (ECM). Here, we explored whether synaptic plasticity is affected in adult behaving mice that lack the ECM proteins brevican, neurocan, tenascin-C, and tenascin-R (KO). We observed that the profiles of synaptic potentiation and depression in the dentate gyrus (DG) were profoundly altered compared to plasticity profiles in wild-type littermates (WT). Specifically, synaptic depression was amplified in a frequency-dependent manner and although late-LTP (>24 hr) was expressed following strong afferent tetanization, the early component of LTP (<75 min post-tetanization) was absent. LTP (>4 hr) elicited by weaker tetanization was equivalent in WT and KO animals. Furthermore, this latter form of LTP was NMDAR-dependent in WT but not KO mice. Scrutiny of DG receptor expression revealed significantly lower levels of both the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor, of the metabotropic glutamate receptor, mGlu5 and of the L-type calcium channel, Cav 1.3 in KO compared to WT animals. Homer 1a and of the P/Q-type calcium channel, Cav 1.2 were unchanged in KO mice. Taken together, findings suggest that in mice that lack multiple ECM proteins, synaptic plasticity is intact, but is fundamentally different.


Subject(s)
Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Hippocampus/physiology , Neuronal Plasticity/physiology , Animals , Animals, Newborn , Brevican/genetics , Brevican/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Male , Mice , Mice, Transgenic , Neurocan/genetics , Neurocan/metabolism , Neuronal Plasticity/genetics , Patch-Clamp Techniques , Piperazines/pharmacology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Tenascin/genetics , Tenascin/metabolism , Wakefulness
3.
Biol Chem ; 398(5-6): 663-675, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28214347

ABSTRACT

Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.


Subject(s)
Central Nervous System/growth & development , Neuronal Plasticity , Proto-Oncogene Proteins c-vav/metabolism , Animals , Central Nervous System/cytology , Humans , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Proto-Oncogene Mas , Synapses/metabolism
4.
J Vis Exp ; (117)2016 11 14.
Article in English | MEDLINE | ID: mdl-27911416

ABSTRACT

Proper neuronal development and function is the prerequisite of the developing and the adult brain. However, the mechanisms underlying the highly controlled formation and maintenance of complex neuronal networks are not completely understood thus far. The open questions concerning neurons in health and disease are diverse and reaching from understanding the basic development to investigating human related pathologies, e.g., Alzheimer's disease and Schizophrenia. The most detailed analysis of neurons can be performed in vitro. However, neurons are demanding cells and need the additional support of astrocytes for their long-term survival. This cellular heterogeneity is in conflict with the aim to dissect the analysis of neurons and astrocytes. We present here a cell-culture assay that allows for the long-term cocultivation of pure primary neurons and astrocytes, which share the same chemically defined medium, while being physically separated. In this setup, the cultures survive for up to four weeks and the assay is suitable for a diversity of investigations concerning neuron-glia interaction.


Subject(s)
Astrocytes , Coculture Techniques , Neurons , Brain , Cells, Cultured , Humans , Neuroglia
5.
Neuroscience ; 337: 117-130, 2016 Nov 19.
Article in English | MEDLINE | ID: mdl-27615033

ABSTRACT

The therapy of patients suffering the psychiatric disorder schizophrenia requires the usage of antipsychotic drugs that are classified into two different groups, the first-generation (FGAs) and the second-generation antipsychotics (SGAs). This study compares the effects of the two FGAs haloperidol and flupentixol with those of the SGA olanzapine on synapse formation and synaptic activity of embryonic rat hippocampal neurons. To this end, the development of perineuronal nets (PNNs), the formation of synapses and the resulting spontaneous network activity under control and treatment conditions were studied using an indirect co-culture system of neurons and astrocytes in completely defined media. The number and extent of PNNs that consist of extracellular matrix superstructures surrounding synapses was not altered in hippocampal neurons by exposure to antipsychotic drugs. In contrast treatment of hippocampal neurons with haloperidol led to a slight decrease whereas olanzapine induced a significant increase of the number of structural synapses after 13days. This differential effect concerning synapse numbers was also reflected in the spontaneous activity of neuronal networks, as monitored on multielectrode arrays (MEAs). In that context, application of haloperidol reduced while olanzapine significantly enhanced network activity. Unexpectedly, flupentixol that is regarded as an FGA caused similar effects than the SGA olanzapine in that it augmented synapse number as well as network activity. Our pilot study provides a proof of concept that the neuron-astrocyte co-culture model can be used to investigate the impact of antipsychotics on pivotal parameters of neuronal cell biology. Thereby, it may support the comparative analysis of antipsychotics applied in the therapy of schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Benzodiazepines/pharmacology , Haloperidol/pharmacology , Hippocampus/drug effects , Synapses/drug effects , Animals , Astrocytes/drug effects , Astrocytes/physiology , Cells, Cultured , Coculture Techniques , Female , Hippocampus/cytology , Neurons/physiology , Olanzapine , Rats , Schizophrenia/chemically induced , Synapses/physiology
6.
Neural Plast ; 2016: 5214961, 2016.
Article in English | MEDLINE | ID: mdl-26881114

ABSTRACT

Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.


Subject(s)
Extracellular Matrix Proteins/physiology , Extracellular Matrix/physiology , Neuroglia/physiology , Neuronal Plasticity , Neurons/physiology , Synapses/physiology , Animals , Humans
7.
J Neurosci ; 33(18): 7742-55, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23637166

ABSTRACT

The extracellular matrix (ECM) of the brain plays crucial roles during the development, maturation, and regeneration of the CNS. In a subpopulation of neurons, the ECM condenses to superstructures called perineuronal nets (PNNs) that surround synapses. Camillo Golgi described PNNs a century ago, yet their biological functions remain elusive. Here, we studied a mouse mutant that lacks four ECM components highly enriched in the developing brain: the glycoproteins tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans brevican and neurocan. Primary embryonic hippocampal neurons and astrocytes were cultivated using a cell insert system that allows for co-culture of distinct cell populations in the absence of direct membrane contacts. The wild-type and knock-out cells were combined in the four possible permutations. Using this approach, neurons cultivated in the presence of mutant astrocytes displayed a transient increase of synapses after 2 weeks. However, after a period of 3 weeks or longer, synapse formation and stabilization were compromised when either neuron or astrocyte cell populations or both were of mutant origin. The development of PNN structures was observed, but their size was substantially reduced on knock-out neurons. The synaptic activity of both wild-type and knock-out neurons was monitored using whole-cell patch clamping. The salient observation was a reduced frequency of IPSCs and EPSCs, whereas the amplitudes were not modified. Remarkably, the knock-out neuron phenotypes could not be rescued by wild-type astrocytes. We conclude that the elimination of four ECM genes compromises neuronal function.


Subject(s)
Extracellular Matrix Proteins/deficiency , Hippocampus/cytology , Nerve Net/pathology , Neurons/physiology , Synapses/genetics , Animals , Astrocytes , Brevican/deficiency , Cell Count , Cells, Cultured , Coculture Techniques , Embryo, Mammalian , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Extracellular Matrix Proteins/classification , Female , Gene Expression Regulation, Developmental/genetics , Inhibitory Postsynaptic Potentials/genetics , Inhibitory Postsynaptic Potentials/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/physiology , Neurocan/deficiency , Synapses/physiology , Tenascin/deficiency
8.
Mol Cell Neurosci ; 56: 18-28, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23500004

ABSTRACT

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family and a ligand for the tropomyosin-receptor kinase B (TrkB), mediates neuronal survival, differentiation, and synaptic plasticity. However, BDNF is not used to treat neurodegenerative diseases because of its poor pharmacokinetic profile, side effects, and absence of survival properties in clinical trials. Consequently, alternative approaches such as TrkB receptor agonist application are gaining importance. 7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, has been described as a robust TrkB receptor agonist in hippocampal neurons. Nevertheless, the influence of 7,8-DHF on motoneurons, one of the main targets of BDNF in vivo, is so far unknown. Therefore, we investigated the impact of 7,8-DHF treatment on primary cultured mouse motoneurons. Indeed, we found an activation of the TrkB receptor. Moreover, 7,8-DHF application promotes survival and neurite growth of cultured motoneurons and these effects appear dose-dependent. To investigate the PI3K/AKT and MAPK pathway activation in 7,8-DHF treated motoneurons, we developed a high-density culture system of primary mouse motoneurons. Analysis of both pathways demonstrated a PI3K/AKT but not MAPK pathway activation in cultured motoneurons. This is in contrast to previously published reports about BDNF-mediated activation of TrkB. The lack of MAPK pathway activation is also in contrast to what has been found for hippocampal neurons that indeed show MAPK activation after 7,8-DHF treatment. The ability of 7,8-DHF to imitate BDNF function in motoneurons by using Trk receptor signaling would provide a new approach for the treatment of motoneuron diseases, but needs a more detailed analysis of the activation profile of 7,8-DHF.


Subject(s)
Flavones/pharmacology , MAP Kinase Signaling System , Motor Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Cell Growth Processes , Cell Survival , Cells, Cultured , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/embryology , Mice , Motor Neurons/metabolism , Motor Neurons/physiology , Neurites/drug effects , Neurites/metabolism , Neurites/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, trkB/agonists , Receptor, trkB/metabolism , Spinal Cord/cytology , Spinal Cord/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...