Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Matrix Biol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097038

ABSTRACT

Skeletal defects are hallmark features of many extracellular matrix (ECM), and collagen-related disorders. However, a biological function in bone has never been defined for the highly evolutionarily conserved type IV collagen. Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form α1α1α2 (IV) heterotrimers that represent a fundamental basement membrane constituent present in every organ of the body, including the skeleton. COL4A1 and COL4A2 mutations cause Gould syndrome, a variable and clinically heterogenous multisystem disorder generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular manifestations. We have previously identified elevated TGFß signaling as a pathological insult resulting from Col4a1 mutations and demonstrated that reducing TGFß signaling ameliorate ocular and cerebrovascular phenotypes in Col4a1 mutant mouse models of Gould syndrome. In this study, we describe the first characterization of skeletal defects in Col4a1 mutant mice that include a developmental delay in osteogenesis and structural, biomechanical and vascular alterations of mature bones. Using distinct mouse models, we show that allelic heterogeneity influences the presentation of skeletal pathology resulting from Col4a1 mutations. Importantly, we found that TGFß target gene expression is elevated in developing bones from Col4a1 mutant mice and show that genetically reducing TGFß signaling partially ameliorates skeletal manifestations. Collectively, these findings identify a novel and unsuspected role for type IV collagen in bone biology, expand the spectrum of manifestations associated with Gould syndrome to include skeletal abnormalities, and implicate elevated TGFß signaling in skeletal pathogenesis in Col4a1 mutant mice.

2.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717426

ABSTRACT

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Subject(s)
Collagen Type IV , Glaucoma , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Transforming Growth Factor beta , Animals , Mice , Anterior Eye Segment/metabolism , Anterior Eye Segment/pathology , Collagen Type IV/metabolism , Collagen Type IV/genetics , Disease Models, Animal , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Intraocular Pressure/physiology , Mice, Inbred C57BL , Mutation , Optic Nerve/pathology , Optic Nerve/metabolism , Optic Nerve Diseases/metabolism , Optic Nerve Diseases/genetics , Phenotype , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Signal Transduction/physiology , Slit Lamp Microscopy , Tomography, Optical Coherence , Tonometry, Ocular , Transforming Growth Factor beta/metabolism
3.
Cells Dev ; 179: 203926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729574

ABSTRACT

The periocular mesenchyme (POM) is a transient migratory embryonic tissue derived from neural crest cells (NCCs) and paraxial mesoderm that gives rise to most of the structures in front of the eye. Morphogenetic defects of these structures can impair aqueous humor outflow, leading to elevated intraocular pressure and glaucoma. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome - a multisystem disorder often characterized by variable cerebrovascular, ocular, renal, and neuromuscular manifestations. Approximately one-third of individuals with COL4A1 and COL4A2 mutations have ocular anterior segment dysgenesis (ASD), including congenital glaucoma resulting from abnormalities of POM-derived structures. POM differentiation has been a major focus of ASD research, but the underlying cellular mechanisms are still unclear. Moreover, earlier events including NCC migration and survival defects have been implicated in ASD; however, their roles are not as well understood. Vascular defects are among the most common consequences of COL4A1 and COL4A2 mutations and can influence NCC survival and migration. We therefore hypothesized that NCC migration might be impaired by COL4A1 and COL4A2 mutations. In this study, we used 3D confocal microscopy, gross morphology, and quantitative analyses to test NCC migration in Col4a1 mutant mice. We show that homozygous Col4a1 mutant embryos have severe embryonic growth retardation and lethality, and we identified a potential maternal effect on embryo development. Cerebrovascular defects in heterozygous Col4a1 mutant embryos were present as early as E9.0, showing abnormal cerebral vasculature plexus remodeling compared to controls. We detected abnormal NCC migration within the diencephalic stream and the POM in heterozygous Col4a1 mutants whereby mutant NCCs formed smaller diencephalic migratory streams and POMs. In these settings, migratory NCCs within the diencephalic stream and POM localize farther away from the developing vasculature. Our results show for the first time that Col4a1 mutations lead to cranial NCCs migratory defects in the context of early onset defective angiogenesis without affecting cell numbers, possibly impacting the relation between NCCs and the blood vessels during ASD development.


Subject(s)
Cell Movement , Collagen Type IV , Disease Models, Animal , Eye Abnormalities , Mutation , Neural Crest , Neural Crest/metabolism , Neural Crest/pathology , Animals , Collagen Type IV/genetics , Collagen Type IV/metabolism , Cell Movement/genetics , Mice , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Mutation/genetics , Anterior Eye Segment/abnormalities , Anterior Eye Segment/pathology
4.
Proc Natl Acad Sci U S A ; 121(5): e2311487121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38261611

ABSTRACT

Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.


Subject(s)
Antigen Presentation , Receptors, Antigen, T-Cell , Animals , Mice , Autoantigens , Disease Models, Animal , Mice, Inbred Strains , Mice, Transgenic
5.
Sci Signal ; 16(811): eadi3966, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963192

ABSTRACT

Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.


Subject(s)
Signal Transduction , TRPM Cation Channels , Mice , Animals , Humans , Ion Transport , Vasoconstriction/physiology , TRPM Cation Channels/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism
6.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894834

ABSTRACT

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Subject(s)
Ehlers-Danlos Syndrome , Tacrolimus Binding Proteins , Humans , Tacrolimus Binding Proteins/metabolism , Collagen/genetics , Peptidylprolyl Isomerase/genetics , Mutation , Ehlers-Danlos Syndrome/genetics
7.
Proc Natl Acad Sci U S A ; 120(35): e2306479120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37607233

ABSTRACT

Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) in brain capillary endothelial cells, leading to the loss of inwardly rectifying K+ (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP2 by converting it to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD.


Subject(s)
Cerebral Small Vessel Diseases , Hyperemia , Neurovascular Coupling , Animals , Mice , Endothelial Cells , Phosphatidylinositol 3-Kinases/genetics , Cerebral Small Vessel Diseases/genetics , Phosphatidylinositol 3-Kinase
8.
Invest Ophthalmol Vis Sci ; 64(4): 30, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37097227

ABSTRACT

Purpose: The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods: We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results: OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions: These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Mice , Aging , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Retinal Degeneration/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Unfolded Protein Response , Endoplasmic Reticulum Stress
9.
bioRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945616

ABSTRACT

Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP 2 ) in brain capillary endothelial cells, leading to the loss of inwardly rectifier K + (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP 2 by converting it to phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD. One-sentence summary: PI3K inhibition rescues neurovascular coupling defects in cerebral small vessel disease.

10.
Proc Natl Acad Sci U S A ; 120(5): e2217327120, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36693102

ABSTRACT

Gould syndrome is a rare multisystem disorder resulting from autosomal dominant mutations in the collagen-encoding genes COL4A1 and COL4A2. Human patients and Col4a1 mutant mice display brain pathology that typifies cerebral small vessel diseases (cSVDs), including white matter hyperintensities, dilated perivascular spaces, lacunar infarcts, microbleeds, and spontaneous intracerebral hemorrhage. The underlying pathogenic mechanisms are unknown. Using the Col4a1+/G394V mouse model, we found that vasoconstriction in response to internal pressure-the vascular myogenic response-is blunted in cerebral arteries from middle-aged (12 mo old) but not young adult (3 mo old) animals, revealing age-dependent cerebral vascular dysfunction. The defect in the myogenic response was associated with a significant decrease in depolarizing cation currents conducted by TRPM4 (transient receptor potential melastatin 4) channels in native cerebral artery smooth muscle cells (SMCs) isolated from mutant mice. The minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is necessary for TRPM4 activity. Dialyzing SMCs with PIP2 and selective blockade of phosphoinositide 3-kinase (PI3K), an enzyme that converts PIP2 to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored TRPM4 currents. Acute inhibition of PI3K activity and blockade of transforming growth factor-beta (TGF-ß) receptors also rescued the myogenic response, suggesting that hyperactivity of TGF-ß signaling pathways stimulates PI3K to deplete PIP2 and impair TRPM4 channels. We conclude that age-related cerebral vascular dysfunction in Col4a1+/G394V mice is caused by the loss of depolarizing TRPM4 currents due to PIP2 depletion, revealing an age-dependent mechanism of cSVD.


Subject(s)
Muscle, Smooth, Vascular , TRPM Cation Channels , Humans , Mice , Animals , Middle Aged , Muscle, Smooth, Vascular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cerebral Arteries/metabolism , Transforming Growth Factor beta/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
11.
Matrix Biol ; 115: 48-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36435425

ABSTRACT

Cerebral small vessel disease (CSVD) is a leading cause of stroke and vascular cognitive impairment and dementia. Studying monogenic CSVD can reveal pathways that are dysregulated in common sporadic forms of the disease and may represent therapeutic targets. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause highly penetrant CSVD as part of a multisystem disorder referred to as Gould syndrome. COL4A1 and COL4A2 form heterotrimers [a1α1α2(IV)] that are fundamental constituents of basement membranes. However, their functions are poorly understood and the mechanism(s) by which COL4A1 and COL4A2 mutations cause CSVD are unknown. We used histological, molecular, genetic, pharmacological, and in vivo imaging approaches to characterize central nervous system (CNS) vascular pathologies in Col4a1 mutant mouse models of monogenic CSVD to provide insight into underlying pathogenic mechanisms. We describe developmental CNS angiogenesis abnormalities characterized by impaired retinal vascular outgrowth and patterning, increased numbers of mural cells with abnormal morphologies, altered contractile protein expression in vascular smooth muscle cells (VSMCs) and age-related loss of arteriolar VSMCs in Col4a1 mutant mice. Importantly, we identified elevated TGFß signaling as a pathogenic consequence of Col4a1 mutations and show that genetically suppressing TGFß signaling ameliorated CNS vascular pathologies, including partial rescue of retinal vascular patterning defects, prevention of VSMC loss, and significant reduction of intracerebral hemorrhages in Col4a1 mutant mice aged up to 8 months. This study identifies a novel biological role for collagen α1α1α2(IV) as a regulator of TGFß signaling and demonstrates that elevated TGFß signaling contributes to CNS vascular pathologies caused by Col4a1 mutations. Our findings suggest that pharmacologically suppressing TGFß signaling could reduce the severity of CSVD, and potentially other manifestations associated with Gould syndrome and have important translational implications that could extend to idiopathic forms of CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Collagen Type IV , Animals , Mice , Basement Membrane/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Mutation , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Disease Models, Animal
12.
J Biol Chem ; 298(12): 102713, 2022 12.
Article in English | MEDLINE | ID: mdl-36403858

ABSTRACT

Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.


Subject(s)
Collagen , Connective Tissue Diseases , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase , Humans , Collagen/metabolism , Glycosylation , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Processing, Post-Translational
13.
Matrix Biol ; 110: 151-173, 2022 06.
Article in English | MEDLINE | ID: mdl-35525525

ABSTRACT

Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFß signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFß signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFß signaling partially prevented ASD. Notably, we identified distinct roles for TGFß1 and TGFß2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFß signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFß signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.


Subject(s)
Collagen Type IV/metabolism , Eye Abnormalities , Animals , Basement Membrane/metabolism , Collagen Type IV/genetics , Eye/metabolism , Eye Abnormalities/metabolism , Mice , Mutation , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
14.
Prenat Diagn ; 42(5): 601-610, 2022 05.
Article in English | MEDLINE | ID: mdl-35150448

ABSTRACT

BACKGROUND: Variants of COL4A1/COL4A2 genes have been reported in fetal intracranial hemorrhage (ICH) cases but their prevalence and characteristics have not been established in a large series of fetuses. Fetal neonatal alloimmune thrombocytopenia is a major acquired ICH factor but the prevalence and characteristics of inherited platelet disorder (IPD) gene variants leading to thrombocytopenia are unknown. Herein, we screened COL4A1/COL4A2 and IPD genes in a large series of ICH fetuses. METHODS: A cohort of 194 consecutive ICH fetuses were first screened for COL4A1/COL4A2 variants. We manually curated a list of 64 genes involved in IPD and investigated them in COL4A1/COL4A2 negative fetuses, using exome sequencing data from 101 of these fetuses. RESULT: Pathogenic variants of COL4A1/COL4A2 genes were identified in 36 fetuses (19%). They occurred de novo in 70% of the 32 fetuses for whom parental DNA was available. Pathogenic variants in two megakaryopoiesis genes (MPL and MECOM genes) were identified in two families with recurrent and severe fetal ICH, with variable extraneurological pathological features. CONCLUSION: Our study emphasizes the genetic heterogeneity of fetal ICH and the need to screen both COL4A1/COL4A2 and IPD genes in the etiological investigation of fetal ICH to allow proper genetic counseling.


Subject(s)
Fetus , Intracranial Hemorrhages , Cohort Studies , Collagen Type IV/genetics , Fetus/pathology , Humans , Infant, Newborn , Intracranial Hemorrhages/genetics , Mutation
15.
Geroscience ; 44(1): 25-37, 2022 02.
Article in English | MEDLINE | ID: mdl-34606040

ABSTRACT

White matter pathologies are critically involved in the etiology of vascular cognitive impairment-dementia (VCID), Alzheimer's disease (AD), and Alzheimer's disease and related diseases (ADRD), and therefore need to be considered a treatable target ( Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793-4, [1] . To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of "The Albert Research Institute for White Matter and Cognition" in 2020. The first annual "Institute" meeting was held virtually on March 3-4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust-sponsored workshops (Barone et al. in J Transl Med 14:1-14, [2]; Sorond et al. in GeroScience 42:81-96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop.


Subject(s)
Dementia, Vascular , Leukoencephalopathies , White Matter , Academies and Institutes , Cognition , Humans , Leukoencephalopathies/pathology
16.
Dis Model Mech ; 14(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-34424299

ABSTRACT

Collagen type IV alpha 1 and alpha 2 (COL4A1 and COL4A2) are major components of almost all basement membranes. COL4A1 and COL4A2 mutations cause a multisystem disorder that can affect any organ but typically involves the cerebral vasculature, eyes, kidneys and skeletal muscles. In recent years, patient advocacy and family support groups have united under the name of Gould syndrome. The manifestations of Gould syndrome are highly variable, and animal studies suggest that allelic heterogeneity and genetic context contribute to the clinical variability. We previously characterized a mouse model of Gould syndrome caused by a Col4a1 mutation in which the severities of ocular anterior segment dysgenesis (ASD), myopathy and intracerebral hemorrhage (ICH) were dependent on genetic background. Here, we performed a genetic modifier screen to provide insight into the mechanisms contributing to Gould syndrome pathogenesis and identified a single locus [modifier of Gould syndrome 1 (MoGS1)] on Chromosome 1 that suppressed ASD. A separate screen showed that the same locus ameliorated myopathy. Interestingly, MoGS1 had no effect on ICH, suggesting that this phenotype could be mechanistically distinct. We refined the MoGS1 locus to a 4.3 Mb interval containing 18 protein-coding genes, including Fn1, which encodes the extracellular matrix component fibronectin 1. Molecular analysis showed that the MoGS1 locus increased Fn1 expression, raising the possibility that suppression is achieved through a compensatory extracellular mechanism. Furthermore, we found evidence of increased integrin-linked kinase levels and focal adhesion kinase phosphorylation in Col4a1 mutant mice that is partially restored by the MoGS1 locus, implicating the involvement of integrin signaling. Taken together, our results suggest that tissue-specific mechanistic heterogeneity contributes to the variable expressivity of Gould syndrome and that perturbations in integrin signaling may play a role in ocular and muscular manifestations.


Subject(s)
Abnormalities, Multiple/genetics , Collagen Type IV/genetics , Fibronectins/genetics , Genes, Modifier , Animals , Cerebral Hemorrhage/complications , Chromosome Mapping , Chromosomes, Mammalian/genetics , Eye Abnormalities/complications , Eye Abnormalities/genetics , Fibronectins/metabolism , Genes, Suppressor , Genetic Loci , Integrins/metabolism , Mice, Mutant Strains , Muscular Diseases/genetics , Porencephaly/complications , Signal Transduction , Syndrome
17.
PLoS Genet ; 17(2): e1009339, 2021 02.
Article in English | MEDLINE | ID: mdl-33524049

ABSTRACT

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Subject(s)
Collagen Type I/genetics , HSP47 Heat-Shock Proteins/genetics , Mutation, Missense , Osteogenesis Imperfecta/genetics , Amino Acid Sequence , Cells, Cultured , Child, Preschool , Collagen Type I/metabolism , Fatal Outcome , Female , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/metabolism , Humans , Infant , Infant, Newborn , Models, Molecular , Osteogenesis Imperfecta/metabolism , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
18.
J Biol Chem ; 296: 100453, 2021.
Article in English | MEDLINE | ID: mdl-33631195

ABSTRACT

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Subject(s)
Collagen Type I/metabolism , Collagen Type V/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/metabolism , Animals , Collagen/genetics , Collagen/metabolism , Collagen Type I/genetics , Collagen Type V/genetics , Endoplasmic Reticulum, Rough/metabolism , Hydroxylation , Hydroxylysine/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Procollagen-Proline Dioxygenase/genetics , Protein Conformation , Protein Processing, Post-Translational/genetics
19.
Sci Rep ; 10(1): 497, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949249

ABSTRACT

Mutations in the FKBP14 gene encoding FKBP22 (FK506 Binding Protein 22 kDa) cause kyphoscoliotic Ehlers-Danlos Syndrome (kEDS). The first clinical report showed that a lack of FKBP22 protein due to mutations causing nonsense-mediated decay of the mRNA leads to a wide spectrum of clinical phenotypes including progressive kyphoscoliosis, joint hypermobility, hypotonia, hyperelastic skin, hearing loss and aortic rupture. Our previous work showed that these phenotypic features could be correlated with the functions of FKBP22, which preferentially binds to type III, VI and X collagens, but not to type I, II or V collagens. We also showed that FKBP22 catalyzed the folding of type III collagen through its prolyl isomerase activity and acted as a molecular chaperone for type III collagen. Recently, a novel missense mutation Met48Lys in FKBP22 was identified in a patient with kEDS. In this report, we expand the list of substrates of FKBP22 and also demonstrate that the Met48Lys mutation diminishes the activities of FKBP22, indicating that pathology can arise from absence of FKBP22, or partial loss of its function.


Subject(s)
Collagen Type III/metabolism , Mutation, Missense , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/metabolism , Cells, Cultured , Circular Dichroism , Collagen Type III/chemistry , Humans , Models, Molecular , Peptidylprolyl Isomerase/genetics , Protein Conformation , Protein Folding
20.
Am J Hum Genet ; 104(5): 847-860, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051113

ABSTRACT

Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.


Subject(s)
Collagen Type IV/genetics , Muscular Diseases/etiology , Mutation , Neuromuscular Diseases/etiology , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Muscular Diseases/pathology , Neuromuscular Diseases/pathology , Organ Specificity , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL