Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38858074

ABSTRACT

The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.

2.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G382-G404, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38860285

ABSTRACT

The internal anal sphincter (IAS) functions to maintain continence. Previous studies utilizing mice with cell-specific expression of GCaMP6f revealed two distinct subtypes of intramuscular interstitial cells of Cajal (ICC-IM) with differing Ca2+ activities in the IAS. The present study further examined Ca2+ activity in ICC-IM and its modulation by inhibitory neurotransmission. The spatiotemporal properties of Ca2+ transients in Type II ICC-IM mimicked those of smooth muscle cells (SMCs), indicating their joint participation in the "SIP" syncytium. Electrical field stimulation (EFS; atropine present) abolished localized and whole cell Ca2+ transients in Type I and II ICC-IM. The purinergic antagonist MRS2500 did not abolish EFS responses in either cell type, whereas the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (l-NNA) abolished responses in Type I but not Type II ICC-IM. Combined antagonists abolished EFS responses in Type II ICC-IM. In both ICC-IM subtypes, the ability of EFS to inhibit Ca2+ release was abolished by l-NNA but not MRS2500, suggesting that the nitrergic pathway directly inhibits ICC-IM by blocking Ca2+ release from intracellular stores. Since inositol (1,4,5)-trisphosphate receptor-associated cGMP kinase substrate I (IRAG1) is expressed in ICC-IM, it is possible that it participates in the inhibition of Ca2+ release by nitric oxide. Platelet-derived growth factor receptor α (PDGFRα)+ cells but not ICC-IM expressed P2Y1 receptors (P2Y1R) and small-conductance Ca2+-activated K+ channels (SK3), suggesting that the purinergic pathway indirectly blocks whole cell Ca2+ transients in Type II ICC-IM via PDGFRα+ cells. This study provides the first direct evidence for functional coupling between inhibitory motor neurons and ICC-IM subtypes in the IAS, with contractile inhibition ultimately dependent upon electrical coupling between SMCs, ICC, and PDGFRα+ cells via the SIP syncytium.NEW & NOTEWORTHY Two intramuscular interstitial cells of Cajal (ICC-IM) subtypes exist within the internal anal sphincter (IAS). This study provides the first evidence for direct coupling between nitrergic motor neurons and both ICC-IM subtypes as well as indirect coupling between purinergic inputs and Type II ICC-IM. The spatiotemporal properties of whole cell Ca2+ transients in Type II ICC-IM mimic those of smooth muscle cells (SMCs), suggesting that ICC-IM modulate the activity of SMCs via their joint participation in a SIP syncytium (SMCs, ICC, and PDGFRα+ cells).


Subject(s)
Anal Canal , Calcium , Interstitial Cells of Cajal , Animals , Interstitial Cells of Cajal/metabolism , Interstitial Cells of Cajal/physiology , Anal Canal/innervation , Anal Canal/metabolism , Mice , Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Calcium Signaling/physiology , Nitric Oxide/metabolism , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL