Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844817

ABSTRACT

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

2.
EMBO Mol Med ; 16(5): 1063-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38589650

ABSTRACT

Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/ß-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/ß-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/ß-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.


Subject(s)
Endothelial Cells , Forkhead Transcription Factors , Frizzled Receptors , Lung Neoplasms , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Humans , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/blood supply , Wnt Signaling Pathway , Disease Progression , Neovascularization, Pathologic/genetics
3.
Mol Cancer ; 21(1): 132, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717322

ABSTRACT

BACKGROUND: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. METHODS: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. RESULTS: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. CONCLUSIONS: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Endothelial Cells/metabolism , Humans , Male , Mice , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Epoprostenol , Tumor Microenvironment
4.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35258392

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Subject(s)
Autophagy , Inflammatory Bowel Diseases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cysteine/metabolism , DNA, Mitochondrial/metabolism , Dextrans/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Formaldehyde/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Isothiocyanates , Lipopolysaccharides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Reactive Oxygen Species/metabolism , Respiration , Sirolimus
5.
Angiogenesis ; 25(3): 355-371, 2022 08.
Article in English | MEDLINE | ID: mdl-35112158

ABSTRACT

Glioblastoma stem cells (GSCs) reside close to blood vessels (BVs) but vascular cues contributing to GSC stemness and the nature of GSC-BVs cross talk are not fully understood. Here, we dissected vascular cues influencing GSC gene expression and function to perfusion-based vascular cues, as well as to those requiring direct GSC-endothelial cell (EC) contacts. In light of our previous finding that perivascular tumor cells are metabolically different from tumor cells residing further downstream, cancer cells residing within a narrow, < 60 µm wide perivascular niche were isolated and confirmed to possess a superior tumor-initiation potential compared with those residing further downstream. To circumvent reliance on marker expression, perivascular GSCs were isolated from the respective locales based on their relative state of quiescence. Combined use of these procedures uncovered a large number of previously unrecognized differentially expressed GSC genes. We show that the unique metabolic milieu of the perivascular niche dominated by the highly restricted zone of mTOR activity is conducive for acquisition of GSC properties, primarily in the regulation of genes implicated in cell cycle control. A complementary role of vascular cues including those requiring direct glioma/EC contacts was revealed using glioma/EC co-cultures. Outstanding in the group of glioma cells impacted by nearby ECs were multiple genes responsible for maintaining GSCs in an undifferentiated state, a large fraction of which also relied on Notch-mediated signaling. Glioma-EC communication was found to be bidirectional, evidenced by extensive Notch-mediated EC reprogramming by contacting tumor cells, primarily metabolic EC reprogramming.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/pathology , Cell Line, Tumor , Cues , Glioblastoma/pathology , Glioma/blood supply , Glioma/genetics , Humans , Neoplastic Stem Cells/pathology
6.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34585146

ABSTRACT

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Subject(s)
Brain/cytology , Choroid/cytology , Endothelial Cells/cytology , Lung/cytology , Muscles/cytology , Animals , Flow Cytometry/methods , Male , Mice , Mice, Inbred C57BL
7.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34382011

ABSTRACT

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Subject(s)
Endothelial Cells/cytology , Kidney/cytology , Spleen/cytology , Testis/cytology , Animals , Flow Cytometry , Male , Mice
8.
STAR Protoc ; 2(2): 100489, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34007969

ABSTRACT

Endothelial cells (ECs) from the small intestine, colon, liver, and heart have distinct phenotypes and functional adaptations that are dependent on their physiological environment. Gut ECs adapt to low oxygen, heart ECs to contractile forces, and liver ECs to low flow rates. Isolating high-purity ECs in sufficient quantities is crucial to study their functions. Here, we describe protocols combining magnetic and fluorescent activated cell sorting for rapid and reproducible EC purification from four adult murine tissues. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020).


Subject(s)
Endothelial Cells/cytology , Flow Cytometry/methods , Intestines/cytology , Liver/cytology , Myocardium/cytology , Animals , Cells, Cultured , Male , Mice , Mice, Inbred C57BL
9.
Cell Rep ; 32(2): 107880, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32668252

ABSTRACT

Pancreatic cancer is a rare but fatal form of cancer, the fourth highest in absolute mortality. Known risk factors include obesity, diet, and type 2 diabetes; however, the low incidence rate and interconnection of these factors confound the isolation of individual effects. Here, we use epidemiological analysis of prospective human cohorts and parallel tracking of pancreatic cancer in mice to dissect the effects of obesity, diet, and diabetes on pancreatic cancer. Through longitudinal monitoring and multi-omics analysis in mice, we found distinct effects of protein, sugar, and fat dietary components, with dietary sugars increasing Mad2l1 expression and tumor proliferation. Using epidemiological approaches in humans, we find that dietary sugars give a MAD2L1 genotype-dependent increased susceptibility to pancreatic cancer. The translation of these results to a clinical setting could aid in the identification of the at-risk population for screening and potentially harness dietary modification as a therapeutic measure.


Subject(s)
Diet , Disease Susceptibility , Energy Intake , Nutritional Physiological Phenomena , Pancreatic Neoplasms/pathology , Aged , Animals , Cell Cycle , Dietary Carbohydrates , Dietary Fats , Dietary Proteins , Female , Gene-Environment Interaction , Humans , Male , Mice, Inbred C57BL , Middle Aged , Obesity
10.
Nucleic Acids Res ; 48(W1): W385-W394, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32392297

ABSTRACT

The amount of biological data, generated with (single cell) omics technologies, is rapidly increasing, thereby exacerbating bottlenecks in the data analysis and interpretation of omics experiments. Data mining platforms that facilitate non-bioinformatician experimental scientists to analyze a wide range of experimental designs and data types can alleviate such bottlenecks, aiding in the exploration of (newly generated or publicly available) omics datasets. Here, we present BIOMEX, a browser-based software, designed to facilitate the Biological Interpretation Of Multi-omics EXperiments by bench scientists. BIOMEX integrates state-of-the-art statistical tools and field-tested algorithms into a flexible but well-defined workflow that accommodates metabolomics, transcriptomics, proteomics, mass cytometry and single cell data from different platforms and organisms. The BIOMEX workflow is accompanied by a manual and video tutorials that provide the necessary background to navigate the interface and get acquainted with the employed methods. BIOMEX guides the user through omics-tailored analyses, such as data pretreatment and normalization, dimensionality reduction, differential and enrichment analysis, pathway mapping, clustering, marker analysis, trajectory inference, meta-analysis and others. BIOMEX is fully interactive, allowing users to easily change parameters and generate customized plots exportable as high-quality publication-ready figures. BIOMEX is open source and freely available at https://www.vibcancer.be/software-tools/biomex.


Subject(s)
Gene Expression Profiling/methods , Single-Cell Analysis/methods , Software , Algorithms , Bile Duct Neoplasms/genetics , Cholangiocarcinoma/genetics , Computer Graphics , Endothelial Cells/metabolism , Humans , Metabolomics/methods , Neoplasms/mortality , Proteomics/methods , Survival Analysis , Workflow
11.
J Am Med Inform Assoc ; 27(8): 1293-1299, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32348469

ABSTRACT

OBJECTIVE: The study sought to describe the development, implementation, and requirements of laboratory information system (LIS) functionality to manage test ordering, registration, sample flow, and result reporting during the coronavirus disease 2019 (COVID-19) pandemic. MATERIALS AND METHODS: Our large (>12 000 000 tests/y) academic hospital laboratory is the Belgian National Reference Center for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We have performed a moving total of >25 000 SARS-CoV-2 polymerase chain reaction tests in parallel to standard routine testing since the start of the outbreak. A LIS implementation team dedicated to develop tools to remove the bottlenecks, primarily situated in the pre- and postanalytical phases, was established early in the crisis. RESULTS: We outline the design, implementation, and requirements of LIS functionality related to managing increased test demand during the COVID-19 crisis, including tools for test ordering, standardized order sets integrated into a computerized provider order entry module, notifications on shipping requirements, automated triaging based on digital metadata forms, and the establishment of databases with contact details of other laboratories and primary care physicians to enable automated reporting. We also describe our approach to data mining and reporting of actionable daily summary statistics to governing bodies and other policymakers. CONCLUSIONS: Rapidly developed, agile extendable LIS functionality and its meaningful use alleviates the administrative burden on laboratory personnel and improves turnaround time of SARS-CoV-2 testing. It will be important to maintain an environment that is conducive for the rapid adoption of meaningful LIS tools after the COVID-19 crisis.


Subject(s)
Clinical Laboratory Information Systems , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Laboratories, Hospital/organization & administration , Medical Order Entry Systems , Pneumonia, Viral/diagnosis , Academic Medical Centers , Belgium , Betacoronavirus , COVID-19 , COVID-19 Testing , Change Management , Evidence-Based Medicine , Humans , Meaningful Use , Pandemics , SARS-CoV-2
12.
Cell Metab ; 31(4): 862-877.e14, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268117

ABSTRACT

Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.


Subject(s)
Endothelial Cells/metabolism , Lung Neoplasms/metabolism , Macular Degeneration/metabolism , Neovascularization, Pathologic/metabolism , Transcriptome , Animals , Endothelial Cells/cytology , Endothelial Cells/pathology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis
14.
Cell ; 180(4): 764-779.e20, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059779

ABSTRACT

The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Subject(s)
Endothelial Cells/metabolism , Single-Cell Analysis , Transcriptome , Animals , Brain/cytology , Cardiovascular System/cytology , Endothelial Cells/classification , Endothelial Cells/cytology , Gastrointestinal Tract/cytology , Male , Mice , Mice, Inbred C57BL , Muscles/cytology , Organ Specificity , RNA-Seq , Testis/cytology
15.
Cancer Cell ; 37(1): 21-36.e13, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31935371

ABSTRACT

Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs, and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative basement-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, validated by functional analysis, identified collagen modification as a candidate angiogenic pathway.


Subject(s)
Endothelial Cells/cytology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Neovascularization, Pathologic , Angiogenesis Inhibitors/pharmacology , Animals , Basement Membrane/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement , Cluster Analysis , Collagen/chemistry , Endothelium, Vascular/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Male , Mice , Phenotype , Single-Cell Analysis , Vascular Endothelial Growth Factor A/metabolism
16.
J Am Soc Nephrol ; 31(1): 118-138, 2020 01.
Article in English | MEDLINE | ID: mdl-31818909

ABSTRACT

BACKGROUND: Renal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown. METHODS: We inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo. RESULTS: We identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and-surprisingly-oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration. CONCLUSIONS: This study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.


Subject(s)
Adaptation, Physiological/genetics , Endothelial Cells/metabolism , Kidney/cytology , Sequence Analysis, RNA , Water Deprivation/physiology , Animals , Endothelial Cells/physiology , Male , Mice , Mice, Inbred C57BL , Phenotype
17.
Nucleic Acids Res ; 47(D1): D736-D744, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357379

ABSTRACT

Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a wealth of data on the molecular basis of EC (dys-)function. Extracting biological insight from these datasets is challenging for scientists who are not proficient in bioinformatics. To facilitate the re-use of publicly available EC transcriptomics data, we developed the endothelial database EndoDB, a web-accessible collection of expert curated, quality assured and pre-analyzed data collected from 360 datasets comprising a total of 4741 bulk and 5847 single cell endothelial transcriptomes from six different organisms. Unlike other added-value databases, EndoDB allows to easily retrieve and explore data of specific studies, determine under which conditions genes and pathways of interest are deregulated and assess reprogramming of metabolism via principal component analysis, differential gene expression analysis, gene set enrichment analysis, heatmaps and metabolic and transcription factor analysis, while single cell data are visualized as gene expression color-coded t-SNE plots. Plots and tables in EndoDB are customizable, downloadable and interactive. EndoDB is freely available at https://vibcancer.be/software-tools/endodb, and will be updated to include new studies.


Subject(s)
Computational Biology , Databases, Genetic , Transcriptome/genetics , Animals , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Humans , Principal Component Analysis
18.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30146486

ABSTRACT

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Subject(s)
Fatty Acid Synthase, Type I/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Malonyl Coenzyme A/metabolism , Retinal Neovascularization/pathology , TOR Serine-Threonine Kinases/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Orlistat/therapeutic use , Protein Processing, Post-Translational , Retinal Neovascularization/drug therapy
19.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30146488

ABSTRACT

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Energy Metabolism , Fatty Acids/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , NADP/metabolism , Receptor, Notch1/metabolism , Animals , Cell Proliferation , HEK293 Cells , Homeostasis , Humans , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxidative Stress
20.
Nature ; 561(7721): 63-69, 2018 09.
Article in English | MEDLINE | ID: mdl-30158707

ABSTRACT

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Subject(s)
Endothelial Cells/enzymology , Endothelial Cells/pathology , Glutamate-Ammonia Ligase/metabolism , Glutamine/biosynthesis , Neovascularization, Pathologic , Actins/metabolism , Animals , Cell Movement , Endothelial Cells/metabolism , Female , Glutamate-Ammonia Ligase/deficiency , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/physiology , HEK293 Cells , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipoylation , Mice , Palmitic Acid/metabolism , Protein Processing, Post-Translational , Stress Fibers/metabolism , rho GTP-Binding Proteins/chemistry , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...