Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854026

ABSTRACT

A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.

2.
PLoS One ; 19(5): e0299722, 2024.
Article in English | MEDLINE | ID: mdl-38809841

ABSTRACT

BACKGROUND: A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS: A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS: Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 µg/m3 transfluthrin vapour. CONCLUSIONS: It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.


Subject(s)
Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Tanzania , Aedes/drug effects , Cyclopropanes/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Humans , Anopheles/drug effects , Insect Bites and Stings/prevention & control , Pyrethrins
3.
Malar J ; 22(1): 340, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940967

ABSTRACT

BACKGROUND: Malaria vectors vary in feeding preference depending on their innate behaviour, host availability and abundance. Host preference and human biting rate in malaria vectors are key factors in establishing zooprophylaxis and zoopotentiation. This study aimed at assessing the impact of non-human hosts in close proximity to humans on the human biting rate of primary and secondary malaria vectors, with varying host preferences. METHODS: The effect of the presence of non-human hosts in close proximity to the human host on the mean catches per person per night, as a proxy for mosquito biting rate, was measured using mosquito-electrocuting traps (METs), in Sagamaganga, Kilombero Valley, Tanzania. Two experiments were designed: (1) a human versus a calf, each enclosed in a MET, and (2) a human surrounded by three calves versus a human alone, with each human volunteer enclosed individually in a MET spaced 10 m apart. Each experiment was conducted on alternate days and lasted for 36 nights per experiment. During each experiment, the positions of hosts were exchanged daily (except the human in experiment 2). All anopheline mosquitoes caught were assayed for Plasmodium sporozoites using enzyme-linked immunosorbent assay. RESULTS: A total of 20,574 mosquitoes were captured and identified during the study, of which 3608 were anophelines (84.4% primary and 15.6% secondary malaria vectors) and 17,146 were culicines. In experiment 1, the primary malaria vector, Anopheles arabiensis, along with Culex spp. demonstrated a preference for cattle, while the primary vectors, Anopheles funestus, preferred humans. In experiment 2, both primary vectors, An. arabiensis and An. funestus, as well as the secondary vector Anopheles rivolurum, demonstrated behaviours amenable to zooprophylaxis, whereas Culex spp. increased their attraction to humans in the presence of nearby cattle. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS: The findings of this study provide support for the zooprophylaxis model for malaria vectors present in the Kilombero Valley, and for the zoopotentiation model, as it pertains to the Culex spp. in the region. However, the factors regulating zooprophylaxis and zoopotentiation are complex, with different species-dependent mechanisms regulating these behaviours, that need to be considered when designing integrated vector management programmes.


Subject(s)
Anopheles , Culex , Insect Bites and Stings , Malaria , Humans , Animals , Cattle , Anopheles/physiology , Malaria/prevention & control , Mosquito Vectors/physiology , Tanzania , Feeding Behavior , Sporozoites
4.
Malar J ; 22(1): 238, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587487

ABSTRACT

BACKGROUND: The use of insecticide-treated nets for malaria control has been associated with shifts in mosquito vector feeding behaviour including earlier and outdoor biting on humans. The relative contribution of phenotypic plasticity and heritability to these behavioural shifts is unknown. Elucidation of the mechanisms behind these shifts is crucial for anticipating impacts on vector control. METHODS: A novel portable semi-field system (PSFS) was used to experimentally measure heritability of biting time in the malaria vector Anopheles arabiensis in Tanzania. Wild An. arabiensis from hourly collections using the human landing catch (HLC) method were grouped into one of 3 categories based on their time of capture: early (18:00-21:00), mid (22:00-04:00), and late (05:00-07:00) biting, and placed in separate holding cages. Mosquitoes were then provided with a blood meal for egg production and formation of first filial generation (F1). The F1 generation of each biting time phenotype category was reared separately, and blood fed at the same time as their mothers were captured host-seeking. The resultant eggs were used to generate the F2 generation for use in heritability assays. Heritability was assessed by releasing F2 An. arabiensis into the PSFS, recording their biting time during a human landing catch and comparing it to that of their F0 grandmothers. RESULTS: In PSFS assays, the biting time of F2 offspring (early: 18:00-21:00, mid: 22:00-04:00 or late: 05:00-07:00) was significantly positively associated with that of their wild-caught F0 grandmothers, corresponding to an estimated heritability of 0.110 (95% CI 0.003, 0.208). F2 from early-biting F0 were more likely to bite early than F2 from mid or late-biting F0. Similarly, the probability of biting late was higher in F2 derived from mid and late-biting F0 than from early-biting F0. CONCLUSIONS: Despite modest heritability, our results suggest that some of the variation in biting time is attributable to additive genetic variation. Selection can, therefore, act efficiently on mosquito biting times, highlighting the need for control methods that target early and outdoor biting mosquitoes.


Subject(s)
Anopheles , Malaria , Humans , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Malaria/prevention & control , Feeding Behavior , Adaptation, Physiological
5.
Malar J ; 22(1): 8, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609275

ABSTRACT

BACKGROUND: Cost-effective outdoor-based devices for surveillance and control of outdoor mosquito vector populations can substantially improve their efficacy when baited with synthetic human and animal odours. This study aimed at assessing the dose-dependent efficacy of a previously developed synthetic cattle urine odour to lure malaria vectors, and other mosquito species, to traps placed at different distances from human dwellings outdoors. METHODS: The efficacy of the cattle urine odour lure was assessed through a 5 × 5 Latin square design, using two sets of 5 Suna traps placed at either 1.5 m or 5 m from an adjacent human dwelling, in the rural village of Sagamaganga, Tanzania. Each trap was deployed with one of four doses of the synthetic cattle urine odour blend or a solvent control (heptane). Traps were rotated daily so that each dose and control visited each position twice over a period of 20 experimental nights. The relative attractiveness of each treatment dose and control was compared using a generalized linear mixed model for each species caught. RESULTS: A total of 1568 mosquitoes were caught, of which 783 were anophelines and 785 were culicines. Of the anophelines, 41.6 and 58.3% were primary and secondary vector species, respectively. Unfed and fed females of the primary vector, Anopheles arabiensis, were caught dose-dependently, close to human dwellings (1.5 m), whereas unfed, fed and gravid secondary vector Anopheles pharoensis females were caught dose-dependently, but at a farther distance from the dwellings (5 m). Females of Culex spp. were caught dose-dependently in similar numbers irrespective of the distance from human dwellings. CONCLUSIONS: This study further clarifies the factors to be considered for the implementation of outdoor trapping using the synthetic cattle urine lure to target exophilic and exophagic malaria vectors, for which efficient surveillance and control tools are currently lacking. The findings resulting from this study make significant progress in providing the needed information to overcome the regulatory obstacles to make this tool available for integrated vector management programs, including registration, as well as evaluation and regulation by the World Health Organization.


Subject(s)
Anopheles , Malaria , Female , Humans , Cattle , Animals , Anopheles/physiology , Odorants , Mosquito Vectors/physiology , Malaria/prevention & control , Malaria/veterinary , Malaria/epidemiology , Mosquito Control/methods
6.
Parasit Vectors ; 15(1): 479, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539892

ABSTRACT

BACKGROUND: Existing control tools have significantly reduced malaria over the past two decades. However, progress has been stalled due to increased resistance in primary vectors and the increasing role of secondary vectors. This study aimed to investigate the impact of seasonal change on primary and secondary vector abundance and host preference. Understanding the impact of seasonal dynamics of primary and secondary vectors on disease transmission will inform effective strategies for vector management and control. METHODS: Vector abundance was measured through longitudinal collection of mosquitoes, conducted monthly during the wet and dry seasons, in Sagamaganga, a village in the Kilombero Valley, Tanzania. Mosquitoes were collected indoors using CDC light traps and backpack aspirators, and outdoors using resting buckets baited with cattle urine. In addition, a direct measure of host preference was taken monthly using human- and cattle-baited mosquito electrocuting traps. A host census was conducted to provide an indirect measure of host preference together with monthly blood meal source analysis. All collected mosquitoes were assayed for Plasmodium sporozoites. RESULTS: A total of 2828 anophelines were collected, of which 78.5% and 21.4%, were primary and secondary vectors, respectively. The abundance of the primary vectors, Anopheles arabiensis and Anopheles funestus, and of the secondary vectors varied seasonally. Indirect measures of host preference indicated that all vectors varied blood meal choice seasonally, with the direct measure confirming this for An. arabiensis. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS: At the study location, the abundance of both primary and secondary vectors changed seasonally. Indirect and direct measures of host preference demonstrated that An. arabiensis varied from being zoophilic to being more opportunistic during the wet and dry seasons. A similar trend was observed for the other vectors.


Subject(s)
Anopheles , Malaria , Humans , Animals , Cattle , Seasons , Tanzania , Insect Vectors , Mosquito Vectors , Sporozoites , Mosquito Control
7.
Parasit Vectors ; 15(1): 420, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369172

ABSTRACT

BACKGROUND: Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method to exposure-free alternatives, such as the mosquito electrocuting traps (MET) and other approaches. While these latter methods can provide robust and representative values of human exposure and mosquito density, they often still require a human volunteer, which poses logistical challenges. Additionally, in the case of the MET, the early MET prototype (METe) required human volunteers to wear protective clothing that could be uncomfortable. We investigated two alternative trapping approaches to address these challenges by comparing the performance of the METe prototype to: (i) a modified caged MET prototype that offers full protection to users (METc) and (ii) a barrier screen trap (BST) designed to passively sample (host-seeking and blood-fed) mosquitoes outdoors without requiring a human participant. METHODS: The relative performance of the METe, METc and BST were evaluated in a 3 × 3 Latin square field experiment design conducted in south-eastern Tanzania over 12 nights of sampling. The outcomes of interest were the nightly catch of mosquitoes and biting time estimates. RESULTS: The METc and BST caught similar numbers of An. arabiensis as the METe (relative ratio [RR] = 0.76, 95% confidence interval [CI]: 0.42-1.39, P = 0.38 and RR = 1.13, 95% CI: 0.63-2.04, P = 0.69, respectively). Similarly, the METc and BST caught similar numbers of Culex spp. as the METe (RR = 0.87, 95% CI: 0.62-1.22, P = 0.42 and RR = 0.80, 95% CI: 0.57-1.12, P = 0.199, respectively). All three trapping methods indicated a similar pattern of biting activity by An. arabiensis and Culex spp., characterized by biting starting in the early evening (18:00-22:00), peaking when people are typically sleeping (22:00-05:00) and dropping off drastically toward the morning (05:00-07:00). CONCLUSIONS: The modifications made to the METe design to improve user comfort and remove the need for protective clothing did not result in an underestimation of mosquito vector abundance nor misrepresentation of their biting time pattern. We recommend the METc for use over the METe design. Similarly, the BST demonstrated potential for monitoring malaria and filariasis vector densities in Tanzania.


Subject(s)
Anopheles , Culex , Filariasis , Malaria , Nematode Infections , Animals , Humans , Tanzania , Mosquito Vectors , Malaria/prevention & control , Phenotype , Mosquito Control/methods
8.
Parasit Vectors ; 14(1): 384, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344438

ABSTRACT

The impacts and limitations of personal protection measures against exposure to vectors of malaria and other mosquito-borne pathogens depend on behavioural interactions between humans and mosquitoes. Therefore, understanding where and when they overlap in time and space is critical. Commonly used approaches for calculating behaviour-adjusted estimates of human exposure distribution deliberately use soft classification of where and when people spend their time, to yield nuanced and representative distributions of mean exposure to mosquito bites across entire human populations or population groups. However, these weighted averages rely on aggregating individual-level data to obtain mean human population distributions across the relevant behavioural classes for each time increment, so they cannot be used to test for variation between individuals. Also, these summary outcomes are quite complex functions of the disaggregated data, so they do not match the standard binomial or count distributions to which routine off-the-shelf statistical tools may be confidently applied. Fortunately, the proportions of exposure to mosquito bites that occur while indoors or asleep can also be estimated in a simple binomial fashion, based on hard classification of human location over a given time increment, as being either completely indoors or completely outdoors. This simplified binomial approach allows convenient analysis with standard off-the-shelf logistic regression tools, to statistically assess variations between individual humans, human population subsets or vector species. Such simplified binomial estimates of behavioural interactions between humans and mosquitoes should be more widely used for estimating confidence intervals around means of these indicators, comparing different vector populations and human population groups, and assessing the influence of individual behaviour on exposure patterns and infection risk. Also, standard sample size estimation techniques may be readily used to estimate necessary minimum experimental scales and data collection targets for field studies recording these indicators as key outcomes. Sample size calculations for field studies should allow for natural geographic variation and seasonality, taking advantage of rolling cross-sectional designs to survey and re-survey large numbers of separate study locations in a logistically feasible manner.


Subject(s)
Malaria/transmission , Mosquito Vectors/physiology , Animals , Binomial Distribution , Demography , Humans , Insect Bites and Stings/etiology , Insect Bites and Stings/prevention & control , Malaria/prevention & control , Mosquito Vectors/parasitology , Time Factors
9.
Parasit Vectors ; 14(1): 265, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34016149

ABSTRACT

BACKGROUND: The human landing catch (HLC) measures human exposure to mosquito bites and evaluates the efficacy of vector control tools. However, it may expose volunteers to potentially infected mosquitoes. The mosquito electrocuting trap (MET) and BG-Sentinel traps (BGS) represent alternative, exposure-free methods for sampling host-seeking mosquitoes. This study investigates whether these methods can be effectively used as alternatives to HLC for measuring the efficacy of transfluthrin emanator against Aedes aegypti. METHODS: The protective efficacy (PE) of freestanding passive transfluthrin emanators (FTPEs), measured by HLC, MET and BGS, was compared in no-choice and choice tests. The collection methods were conducted 2 m from an experimental hut with FTPEs positioned at 3 m on either side of them. For the choice experiment, a competitor HLC was included 10 m from the first collection point. One hundred laboratory-reared Ae. aegypti mosquitoes were released and collected for 3 consecutive h. RESULTS: In the no-choice test, each method measured similar PE: HLC: 66% (95% confidence interval [CI]: 50-82), MET: 55% (95% CI: 48-63) and BGS: 64% (95% CI: 54-73). The proportion of mosquitoes recaptured was consistent between methods (20-24%) in treatment and varied (47-71%) in the control. However, in choice tests, the PE measured by each method varied: HLC: 37% (95% CI: 25-50%), MET: 76% (95% CI: 61-92) and BGS trap: 0% (95% CI: 0-100). Recaptured mosquitoes were no longer consistent between methods in treatment (2-26%) and remained variable in the control (7-42%). FTPE provided 50% PE to the second HLC 10 m away. In the control, the MET and the BGS were less efficacious in collecting mosquitoes in the presence of a second HLC. CONCLUSIONS: Measuring the PE in isolation was fairly consistent for HLC, MET and BGS. Because HLC is not advisable, it is reasonable to use either MET or BGS as a proxy for HLC for testing volatile pyrethroid (VP) in areas of active arbovirus-endemic areas. The presence of a human host in close proximity invalidated the PE estimates from BGS and METs. Findings also indicated that transfluthrin can protect multiple people in the peridomestic area and that at short range mosquitoes select humans over the BGS.


Subject(s)
Aedes/drug effects , Aedes/physiology , Cyclopropanes/pharmacology , Fluorobenzenes/pharmacology , Mosquito Control/methods , Protective Agents/pharmacology , Adult , Animals , Feeding Behavior , Female , Humans , Male , Mosquito Control/instrumentation
10.
J Appl Ecol ; 58(11): 2673-2685, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35221371

ABSTRACT

Understanding the role of different species in the transmission of multi-host pathogens, such as rabies virus, is vital for effective control strategies. Across most of sub-Saharan Africa domestic dogs Canis familiaris are considered the reservoir for rabies, but the role of wildlife has been long debated. Here we explore the multi-host transmission dynamics of rabies across south-east Tanzania.Between January 2011 and July 2019, data on probable rabies cases were collected in the regions of Lindi and Mtwara. Hospital records of animal-bite patients presenting to healthcare facilities were used as sentinels for animal contact tracing. The timing, location and species of probable rabid animals were used to reconstruct transmission trees to infer who infected whom and the relative frequencies of within- and between-species transmission.During the study, 688 probable human rabies exposures were identified, resulting in 47 deaths. Of these exposures, 389 were from domestic dogs (56.5%) and 262 from jackals (38.1%). Over the same period, 549 probable animal rabies cases were traced: 303 in domestic dogs (55.2%) and 221 in jackals (40.3%), with the remainder in domestic cats and other wildlife species.Although dog-to-dog transmission was most commonly inferred (40.5% of transmission events), a third of inferred events involved wildlife-to-wildlife transmission (32.6%), and evidence suggested some sustained transmission chains within jackal populations.A steady decline in probable rabies cases in both humans and animals coincided with the implementation of widespread domestic dog vaccination during the first 6 years of the study. Following the lapse of this program, dog rabies cases began to increase in one of the northernmost districts. Synthesis and applications. In south-east Tanzania, despite a relatively high incidence of rabies in wildlife and evidence of wildlife-to-wildlife transmission, domestic dogs remain essential to the reservoir of infection. Continued dog vaccination alongside improved surveillance would allow a fuller understanding of the role of wildlife in maintaining transmission in this area. Nonetheless, dog vaccination clearly suppressed rabies in both domestic dog and wildlife populations, reducing both public health and conservation risks and, if sustained, has potential to eliminate rabies from this region.

11.
Malar J ; 19(1): 418, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33218346

ABSTRACT

BACKGROUND: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. METHODS: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. RESULTS: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). CONCLUSION: Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


Subject(s)
Anopheles/physiology , Mosquito Vectors/physiology , Animals , Feeding Behavior , Humans , Insect Bites and Stings/epidemiology , Malaria/transmission , Tanzania/epidemiology , Urban Population/statistics & numerical data
12.
Malar J ; 19(1): 219, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576200

ABSTRACT

BACKGROUND: In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species. METHODS: Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus. RESULTS: One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation. CONCLUSION: This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species.


Subject(s)
Animal Distribution , Anopheles/physiology , Ecosystem , Mosquito Vectors/physiology , Animals , Anopheles/growth & development , Larva/growth & development , Larva/physiology , Malaria/transmission , Mosquito Vectors/growth & development , Tanzania
13.
PLoS One ; 15(6): e0234557, 2020.
Article in English | MEDLINE | ID: mdl-32555660

ABSTRACT

After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.


Subject(s)
Anopheles/physiology , Malaria/transmission , Mosquito Vectors/physiology , Neural Networks, Computer , Oviparity , Spectroscopy, Near-Infrared/methods , Animals , Female , Humans
14.
Malar J ; 19(1): 148, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32268907

ABSTRACT

BACKGROUND: Outdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved. While indoor-targeted interventions, such as insecticide-treated nets and indoor residual spraying, remain essential, complementary approaches that tackle persisting outdoor transmission are urgently required to maximize the impact. Major malaria vectors principally bite human hosts around the feet and ankles. Consequently, this study investigated whether sandals treated with efficacious spatial repellents can protect against outdoor biting mosquitoes. METHODOLOGY: Sandals affixed with hessian bands measuring 48 cm2 treated with 0.06 g, 0.10 g and 0.15 g of transfluthrin were tested in large cage semi-field and full field experiments. Sandals affixed with hessian bands measuring 240 cm2 and treated with 0.10 g and 0.15 g of transfluthrin were also tested semi field experiments. Human landing catches (HLC) were used to assess reduction in biting exposure by comparing proportions of mosquitoes landing on volunteers wearing treated and untreated sandals. Sandals were tested against insectary reared Anopheles arabiensis mosquitoes in semi-field experiments and against wild mosquito species in rural Tanzania. RESULTS: In semi-field tests, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g, 0.10 g and 0.06 g transfluthrin reduced mosquito landings by 45.9%, (95% confidence interval (C.I.) 28-59%), 61.1% (48-71%), and 25.9% (9-40%), respectively compared to untreated sandals. Sandals fitted with hessian bands measuring 240 cm2 and treated with 0.15 g and 0.10 g transfluthrin reduced mosquito landings by 59% (43-71%) and 64% (48-74%), respectively. In field experiments, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g transfluthrin reduced mosquito landings by 70% (60-76%) against Anopheles gambiae sensu lato, and 66.0% (59-71%) against all mosquito species combined. CONCLUSION: Transfluthrin-treated sandals conferred significant protection against mosquito bites in semi-field and field settings. Further evaluation is recommended for this tool as a potential complementary intervention against malaria. This intervention could be particularly useful for protecting against outdoor exposure to mosquito bites. Additional studies are necessary to optimize treatment techniques and substrates, establish safety profiles and determine epidemiological impact in different settings.


Subject(s)
Anopheles , Cyclopropanes , Fluorobenzenes , Insect Bites and Stings/prevention & control , Insect Repellents , Mosquito Control , Shoes , Adult , Animals , Humans , Male , Tanzania , Young Adult
16.
Lancet Planet Health ; 3(3): e132-e143, 2019 03.
Article in English | MEDLINE | ID: mdl-30904112

ABSTRACT

BACKGROUND: In the city of Dar es Salaam, Tanzania, rapid and spontaneous scale-up of window screening occurred through purely horizontal commercial distribution systems without any public subsidies or promotion. Scale-up of window screening coincided with a planned evaluation of programmatic, vertically managed scale-up of regular larvicide application as an intervention against malaria vectors and transmission. We aimed to establish whether scale-up of window screening was associated with suppression of mosquito populations, especially for malaria vectors that strongly prefer humans as their source of blood. METHODS: This study was a re-analysis of a previous observational series of epidemiological data plus new analyses of previously partly reported complementary entomological data, from Dar es Salaam. Between 2004 and 2008, six rounds of cluster-sampled, rolling, cross-sectional parasitological and questionnaire surveys were done in urban Dar es Salaam to assess the effect of larviciding and other determinants of malaria risk, such as use of bed nets and antimalarial drugs, socioeconomic status, age, sex, travel history, mosquito-proofed housing, and spending time outdoors. The effects of scaled-up larvicide application and window screening were estimated by fitting generalised linear mixed models that allowed for both spatial variation between survey locations and temporal autocorrelation within locations. We also conducted continuous longitudinal entomological surveys of outdoor human biting rates by mosquitoes and experimental measurements of mosquito host preferences. FINDINGS: Best-fit models of Plasmodium falciparum malaria infection prevalence among humans were largely consistent with the results of the previous analyses. Re-analysis of previously reported epidemiological data revealed that most of the empirically fitted downward time trend in P falciparum malaria prevalence over the course of the study (odds ratio [OR] 0·04; 95% CI 0·03-0·06; p<0·0001), which was not previously reported numerically or attributed to any explanatory factor, could be plausibly explained by association with an upward trend in city-wide window screening coverage (OR 0·07; 0·05-0·09; p<0·0001) and progressive rollout of larviciding (OR 0·50; 0·41-0·60; p<0·0001). Increasing coverage of complete window screening was also associated with reduced biting densities of all taxonomic groups of mosquitoes (all p<0·0001), especially the Anopheles gambiae complex (relative rate [RR] 0·23; 95% CI 0·16-0·33) and Anopheles funestus group (RR 0·08; 0·04-0·16), which were confirmed as the most efficient vectors of malaria with strong preferences for humans over cattle. Larviciding was also associated with reduced biting densities of all mosquito taxa (p<0·0001), to an extent that varied consistently with the larvicide targeting scheme and known larval ecology of each taxon. INTERPRETATION: Community-wide mosquito proofing of houses might deliver greater impacts on vector populations and malaria transmission than previously thought. The spontaneous nature of the scale-up observed here is also encouraging with regards to practicality, acceptability, and affordability in low-income settings. FUNDING: United States Agency for International Development, Bill & Melinda Gates Foundation, Wellcome Trust, and Valent BioSciences LLC.


Subject(s)
Anopheles , Housing , Malaria/epidemiology , Mosquito Control , Mosquito Vectors , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Cities , Female , Humans , Infant , Infant, Newborn , Malaria/parasitology , Male , Middle Aged , Mosquito Control/instrumentation , Mosquito Control/methods , Population Density , Prevalence , Tanzania/epidemiology , Young Adult
17.
Malar J ; 18(1): 83, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30885205

ABSTRACT

BACKGROUND: Mosquito biting rates and host preferences are crucial determinants of human exposure to vector-borne diseases and the impact of vector control measures. The human landing catch (HLC) is a gold standard method for measuring human exposure to bites, but presents risks to participants by requiring some exposure to mosquito vectors. Mosquito electrocuting traps (METs) represent an exposure-free alternative to HLCs for measuring human exposure to malaria vectors. However, original MET prototypes were too small for measuring whole-body biting rates on humans or large animals like cattle. Here a much larger MET capable of encompassing humans or cattle was designed, and its performance was evaluated relative to both the original small MET and HLC and for quantifying malaria vector host preferences. METHODS: Human landing catch, small human-baited METs (MET-SH), and large METs baited with either a human (MET-LH) or calves (MET-LC) were simultaneously used to capture wild malaria vectors outdoors in rural southern Tanzania. The four capture methods were compared in a Latin-square design over 20 nights. Malaria vector host preferences were estimated through comparison of the number of mosquitoes caught by large METs baited with either humans or cattle. RESULTS: The MET-LH caught more than twice as many Anopheles arabiensis than either the MET-SH or HLC. It also caught higher number of Anopheles funestus sensu lato (s.l.) compared to the MET-SH or HLC. Similar numbers of An. funestus sensu stricto (s.s.) were caught in MET-LH and MET-SH collections. Catches of An. arabiensis with human or cattle-baited large METs were similar, indicating no clear preference for either host. In contrast, An. funestus s.s. exhibited a strong, but incomplete preference for humans. CONCLUSIONS: METs are a sensitive, practical tool for assessing mosquito biting rates and host preferences, and represent a safer alternative to the HLC. Additionally these findings suggest the HLC underestimate whole-body human exposure. MET collections indicated the An. funestus s.s. population in this setting had a higher than expected attack rate on cattle, potentially making eliminating of this species more difficult with human-targetted control measures. Supplementary vector control tools targetted at livestock may be required to effectively tackle this species.


Subject(s)
Anopheles/physiology , Entomology/methods , Feeding Behavior , Host Specificity , Adult , Animals , Cattle , Entomology/instrumentation , Female , Humans , Male , Rural Population , Tanzania , Young Adult
18.
Vaccine ; 37 Suppl 1: A45-A53, 2019 10 03.
Article in English | MEDLINE | ID: mdl-30309746

ABSTRACT

BACKGROUND: Rabies is preventable through prompt administration of post-exposure prophylaxis (PEP) to exposed persons, but PEP access is limited in many rabies-endemic countries. We investigated how access to PEP can be improved to better prevent human rabies. METHODS: Using data from different settings in Tanzania, including contact tracing (2,367 probable rabies exposures identified) and large-scale mobile phone-based surveillance (24,999 patient records), we estimated the incidence of rabies exposures and bite-injuries, and examined health seeking and health outcomes in relation to PEP access. We used surveys and qualitative interviews with stakeholders within the health system to further characterise PEP supply and triangulate these findings. RESULTS: Incidence of bite-injury patients was related to dog population sizes, with higher incidence in districts with lower human:dog ratios and urban centres. A substantial percentage (25%) of probable rabies exposures did not seek care due to costs and limited appreciation of risk. Upon seeking care a further 15% of probable rabies exposed persons did not obtain PEP due to shortages, cost barriers or misadvice. Of those that initiated PEP, 46% did not complete the course. If no PEP was administered, the risk of developing rabies following a probable rabies exposure was high (0.165), with bites to the head carrying most risk. Decentralized and free PEP increased the probability that patients received PEP and reduced delays in initiating PEP. No major difficulties were encountered by health workers whilst switching to dose-sparing ID administration of PEP. Health infrastructure also includes sufficient cold chain capacity to support improved PEP provision. However, high costs to governments and patients currently limits the supply chain and PEP access. The cost barrier was exacerbated by decentralization of budgets, with priority given to purchase of cheaper medicines for other conditions. Reactive procurement resulted in limited and unresponsive PEP supply, increasing costs and risks to bite victims. CONCLUSION: PEP access could be improved and rabies deaths reduced through ring-fenced procurement, switching to dose-sparing ID regimens and free provision of PEP.


Subject(s)
Health Services Accessibility/statistics & numerical data , Immunologic Factors/supply & distribution , Post-Exposure Prophylaxis/supply & distribution , Rabies Vaccines/supply & distribution , Rabies/epidemiology , Rabies/prevention & control , Bites and Stings/complications , Humans , Incidence , Patient Acceptance of Health Care/statistics & numerical data , Post-Exposure Prophylaxis/methods , Survival Analysis , Tanzania/epidemiology , Treatment Outcome
19.
R Soc Open Sci ; 5(5): 161055, 2018 May.
Article in English | MEDLINE | ID: mdl-29892341

ABSTRACT

Geophysical topographic metrics of local water accumulation potential are freely available and have long been known as high-resolution predictors of where aquatic habitats for immature Anopheles mosquitoes are most abundant, resulting in elevated densities of adult malaria vectors and human infection burden. Using existing entomological and epidemiological survey data, here we illustrate how topography can also be used to map out the interfaces between wet, unoccupied valleys and dry, densely populated uplands, where malaria vector densities and infection risk are focally exacerbated. These topographically identifiable geophysical boundaries experience disproportionately high vector densities and malaria transmission risk, because this is where Anopheles mosquitoes first encounter humans when they search for blood after emerging or ovipositing in the valleys. Geophysical topographic indicators accounted for 67% of variance for vector density but for only 43% for infection prevalence, so they could enable very selective targeting of interventions against the former but not the latter (targeting ratios of 5.7 versus 1.5 to 1, respectively). So, in addition to being useful for targeting larval source management to wet valleys, geophysical topographic indicators may also be used to selectively target adult Anopheles mosquitoes with insecticidal residual sprays, fencing, vapour emanators or space sprays to barrier areas along their fringes.

20.
Malar J ; 16(1): 410, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29020970

ABSTRACT

BACKGROUND: The effectiveness of malaria prevention with long-lasting insecticidal nets and indoor residual spraying is limited by emerging insecticide resistance, evasive mosquito behaviours that include outdoor biting, sub-optimal implementation and inappropriate use. New vector control interventions are required and their potential effectiveness will be enhanced if existing household perceptions and practices are integrated into intervention design. METHODS: This qualitative descriptive study used focus groups discussions, in-depth interviews and photovoice methods to explore mosquito control perceptions and practices among residents in four study sites in Dar es Salaam, Tanzania. RESULTS: Mosquitoes were perceived as a growing problem, directly attributed to widespread environmental deterioration and lack of effective mosquito control interventions. Malaria and nuisance biting were perceived as the main problem caused by mosquitoes. Breeding sites were clearly distinguished from resting sites but residents did not differentiate between habitats producing malaria vector mosquitoes and others producing mostly nuisance mosquitoes. The most frequently mentioned protection methods in the wealthiest locations were bed nets, aerosol insecticide sprays, window screens, and fumigation, while bed nets were most frequently mentioned and described as 'part of the culture' in the least wealthy locations. Mosquito-proofed housing was consistently viewed as desirable, but considered unaffordable outside wealthiest locations. Slapping and covering up with clothing were most commonly used to prevent biting outdoors. Despite their utility outdoors, topical repellents applied to the skin were considered expensive, and viewed with suspicion due to perceived side effects. Improving the local environment was the preferred method for preventing outdoor biting. Affordability, effectiveness, availability, practicality, as well as social influences, such as government recommendations, socialization and internalization (familiarization and habit) were described as key factors influencing uptake. CONCLUSIONS: Outdoor transmission is widely accepted as an obstacle to malaria elimination. Larval source management, targeting both malaria vectors and nuisance-biting mosquitoes, is the preferred method for mosquito control among the residents of Dar es Salaam and should be prioritized for development alongside new methods for outdoor personal protection. Even if made available, effective and affordable, these additional interventions may require time and user experience to achieve positive reputations and trustworthiness.


Subject(s)
Community Participation , Health Knowledge, Attitudes, Practice , Mosquito Control/statistics & numerical data , Perception , Adult , Female , Humans , Malaria/prevention & control , Male , Middle Aged , Mosquito Control/methods , Mosquito Vectors , Tanzania , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL