Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Trends Parasitol ; 40(2): 131-146, 2024 02.
Article in English | MEDLINE | ID: mdl-38262838

ABSTRACT

In malaria parasites, although post-translational modification of proteins with N-. O-, and C-glycosidic bond-linked glycans is limited, it is confined to relatively fewer proteins in which the glycans are present at significant levels and may have important functions. Furthermore, several proteins are modified with glycosylphosphatidylinositols (GPIs) which represent the predominant glycan synthesized by parasites. Modification of proteins with GPIs is obligatory for parasite survival as GPI-anchored proteins (GPI-APs) play essential roles in all life cycle stages of the parasites, including development, egress, gametogenesis, motility, and host cell adhesion and invasion. Here, we discuss the current knowledge on the structures and potential functions of the glycan moieties of parasite proteins. The knowledge has important implications for the development of drugs and vaccines for malaria.


Subject(s)
Parasites , Animals , Glycosylation , Parasites/metabolism , Plasmodium falciparum , Protein Processing, Post-Translational , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Polysaccharides/metabolism , Protozoan Proteins/metabolism
2.
J Leukoc Biol ; 113(5): 471-488, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36977632

ABSTRACT

Malaria infection causes multiple organ-specific lethal pathologies, including cerebral malaria, and severe liver and lung pathologies by inducing strong inflammatory responses. Gene polymorphism studies suggest that TLR4 and TLR2 contribute to severe malaria, but the roles of these signaling molecules in malaria pathogenesis remain incompletely understood. We hypothesize that danger-associated molecular patterns produced in response to malaria activate TLR2 and TLR4 signaling and contribute to liver and lung pathologies. By using a mouse model of Plasmodium berghei NK65 infection, we show that the combined TLR2 and TLR4 signaling contributes to malaria liver and lung pathologies and mortality. Macrophages, neutrophils, natural killer cells, and T cells infiltrate to the livers and lungs of infected wild-type mice more than TLR2,4-/- mice. Additionally, endothelial barrier disruption, tissue necrosis, and hemorrhage were higher in the livers and lungs of infected wild-type mice than in those of TLR2,4-/- mice. Consistent with these results, the levels of chemokine production, chemokine receptor expression, and liver and lung pathologic markers were higher in infected wild-type mice than in TLR2,4-/- mice. In addition, the levels of HMGB1, a potent TLR2- and TLR4-activating danger-associated molecular pattern, were higher in livers and lungs of wild-type mice than TLR2,4-/- mice. Treatment with glycyrrhizin, an immunomodulatory agent known to inhibit HMGB1 activity, markedly reduced mortality in wild-type mice. These results suggest that TLR2 and TLR4 activation by HMGB1 and possibly other endogenously produced danger-associated molecular patterns contribute to malaria liver and lung injury via signaling mechanisms distinct from those involved in cerebral malaria pathogenesis.


Subject(s)
HMGB1 Protein , Malaria, Cerebral , Animals , Mice , Toll-Like Receptor 2/metabolism , HMGB1 Protein/metabolism , Toll-Like Receptor 4/metabolism , Malaria, Cerebral/pathology , Lung/pathology , Signal Transduction/genetics , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout
3.
Int J Biol Macromol ; 226: 143-158, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36470436

ABSTRACT

VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Female , Pregnancy , Placenta/metabolism , Malaria, Falciparum/metabolism , Antigens, Protozoan/chemistry , Protein Structure, Tertiary , Plasmodium falciparum/metabolism , Chondroitin Sulfates/chemistry , Erythrocytes/metabolism , Disulfides/metabolism
4.
Adv Neurobiol ; 29: 1-39, 2023.
Article in English | MEDLINE | ID: mdl-36255670

ABSTRACT

This chapter provides an overview of structures and functions of complex carbohydrates (commonly called glycans) that are covalently linked to proteins or lipids to form glycoconjugates known as glycoproteins, glycolipids, and proteoglycans. To understand the complexity of the glycan structures, the nature of their monosaccharide building blocks, how the monomeric units are covalently linked to each other, and how the resulting glycans are attached to proteins or lipids are discussed. Then, the classification, nomenclature, structural features, and functions of the glycan moieties of animal glycoconjugates are briefly described. All three classes of glycoconjugates are constituents of plasma membranes of all animal cells, including those of the nervous system. Glycoproteins and proteoglycans are also found abundantly as constituents of tissue matrices. Additionally, glycan-rich mucin glycoproteins are the major constituents of mucus secretions of epithelia of various organs. Furthermore, the chapter draws attention to the incredible structural complexity and diversity of the glycan moieties of cell surface and extracellular glycoconjugates. Finally, the involvement of glycans as informational molecules in a wide range of essential functions in almost all known biological processes, which are crucial for development, differentiation, and normal functioning of animals, is discussed.


Subject(s)
Carbohydrates , Glycoconjugates , Animals , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Carbohydrates/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycolipids/chemistry , Proteoglycans/chemistry , Monosaccharides , Cell Membrane/metabolism , Mucins
5.
Trop Parasitol ; 12(1): 21-33, 2022.
Article in English | MEDLINE | ID: mdl-35923270

ABSTRACT

Background and Objectives: Pregnancy malaria is a major underestimated global public health problem. To understand the involvement of oxidative stress (OS) in the pathophysiology of placental malaria, OS biomarkers, malondialdehyde (MDA), uric acid (UA), and superoxide dismutase (SOD) levels were analyzed and correlated to placental histopathological changes and pregnancy outcomes. Methods: A hospital-based study was conducted in Mangaluru, Karnataka, India, to analyze the changes in hematological parameters and the serum OS biomarker levels. Histological analysis of placenta, associated complications, and pregnancy outcomes were compared using Kruskal-Wallis test, and pairwise comparison between two groups was made by Mann-Whitney U-test. Correlations were calculated by Pearson's and Spearman's rank correlations. Results: Among 105 pregnant women, 34 were healthy controls and the infected group comprised of Plasmodium Vivax (Pv) (n = 48), Plasmodium falciparum (Pf) (n = 13), and mixed (n = 10) malaria infections. Of 71 infected cases, 67.6% had mild malaria, whereas 32.4% had severe malaria. The white blood cell and C-reactive protein levels were found to increase, whereas hemoglobin, red blood cell, and platelet levels decreased during both types of malarial infections. The MDA and UA values increased and SOD levels decreased particularly during severe Pf infections. Histological changes such as syncytial knots, syncytial ruptures, and fibrinoid necrosis were observed particularly during Pf infections and leukocyte infiltration was observed in Pv malaria. Conclusion: Evaluation of MDA, UA, and SOD levels can serve as an indicator of OS during pregnancy malaria. The OS during pregnancy may lead to complications such as severe anemia, pulmonary edema, intra uterine growth retardation, premature delivery, and low birth weight, not only during Pf but also in Pv malaria. It is important to create awareness among rural and immigrant population residing in Mangaluru and its surroundings about required preventive measures and free government-supported antenatal care services.

6.
J Biol Chem ; 296: 100615, 2021.
Article in English | MEDLINE | ID: mdl-33798555

ABSTRACT

Persistent high levels of proinflammatory and Th1 responses contribute to cerebral malaria (CM). Suppression of inflammatory responses and promotion of Th2 responses prevent pathogenesis. IL-4 commonly promotes Th2 responses and inhibits inflammatory and Th1 responses. Therefore, IL-4 is widely considered as a beneficial cytokine via its Th2-promoting role that is predicted to provide protection against severe malaria by inhibiting inflammatory responses. However, IL-4 may also induce inflammatory responses, as the result of IL-4 action depends on the timing and levels of its production and the tissue environment in which it is produced. Recently, we showed that dendritic cells (DCs) produce IL-4 early during malaria infection in response to a parasite protein and that this IL-4 response may contribute to severe malaria. However, the mechanism by which IL-4 produced by DCs contributing to lethal malaria is unknown. Using Plasmodium berghei ANKA-infected C57BL/6 mice, a CM model, we show here that mice lacking IL-4Rα only in CD8α+ DCs are protected against CM pathogenesis and survive, whereas WT mice develop CM and die. Compared with WT mice, mice lacking IL-4Rα in CD11c+ or CD8α+ DCs showed reduced inflammatory responses leading to decreased Th1 and cytotoxic CD8+ T cell responses, lower infiltration of CD8+ T cells to the brain, and negligible brain pathology. The novel results presented here reveal a paradoxical role of IL-4Rα signaling in CM pathogenesis that promotes CD8α+ DC-mediated inflammatory responses that generate damaging Th1 and cytotoxic CD8+ T cell responses.


Subject(s)
CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Th1 Cells/immunology , Animals , CD8 Antigens/genetics , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Interleukin-4/genetics , Interleukin-4/immunology , Malaria, Cerebral/genetics , Malaria, Cerebral/pathology , Mice , Mice, Knockout , Plasmodium berghei/genetics , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Th1 Cells/pathology , Th2 Cells/immunology , Th2 Cells/pathology
7.
J Parasit Dis ; 45(1): 176-190, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33100734

ABSTRACT

Merozoite surface protein-1 (MSP-1) of malaria parasites has been extensively studied as a malaria vaccine candidate and the antibody response to this protein is an important indicator of protective immunity to malaria. Mangaluru city and its surrounding areas in southwestern India are endemic to malaria with Plasmodium vivax being the most widespread and prevalent species although P. falciparum also frequently infects. However, no information is available on the level of protective immunity in this population. In this regard, a prospective hospital-based study was performed in malarial patients to assess antibody responses against the 19-kDa C-terminal portion of P. vivax and P. falciparum MSP-1 (MSP-119). Serum samples from 51 healthy endemic controls and 267 infected individuals were collected and anti-MSP-119 antibody levels were analyzed by ELISA. The possible association between the antibody responses and morbidity parameters such as malarial anemia and thrombocytopenia was investigated. Among the 267 infected cases, 144 had P. vivax and 123 had P. falciparum infections. Significant levels of anti-MSP-119 antibody were observed both in P. vivax (123/144; 85.4%) and P. falciparum (108/123; 87.9%) infected individuals. In both type of infections, the major antibody isotypes were IgG1 and IgG3. The IgG levels were found to be increased in patients with severe anemia and thrombocytopenia. The antibody levels were also higher in infected individuals who had several previous infections, although antibodies produced during previous infections were short lived. The predominance of cytophilic anti-MSP-119 IgG1 and IgG3 antibodies suggests the possibility of a dual role of Pv MSP-119 and Pf MSP-119 during malarial immunity and pathogenesis.

8.
J Immunol ; 206(1): 118-131, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33239419

ABSTRACT

Cytokine responses to malaria play important roles in both protective immunity development and pathogenesis. Although the roles of cytokines such as TNF-α, IL-12, IFN-γ, and IL-10 in immunity and pathogenesis to the blood stage malaria are largely known, the role of IL-4 remains less understood. IL-4 targets many cell types and induces multiple effects, including cell proliferation, gene expression, protection from apoptosis, and immune regulation. Accordingly, IL-4 has been exploited as a therapeutic for several inflammatory diseases. Malaria caused by Plasmodium falciparum manifests in many organ-specific fatal pathologies, including cerebral malaria (CM), driven by a high parasite load, leading to parasite sequestration in organs and consequent excessive inflammatory responses and endothelial damage. We investigated the therapeutic potential of IL-4 against fatal malaria in Plasmodium berghei ANKA-infected C57BL/6J mice, an experimental CM model. IL-4 treatment significantly reduced parasitemia, CM pathology, and mortality. The therapeutic effect of IL-4 is mediated through multiple mechanisms, including enhanced parasite clearance mediated by upregulation of phagocytic receptors and increased IgM production, and decreased brain inflammatory responses, including reduced chemokine (CXCL10) production, reduced chemokine receptor (CXCR3) and adhesion molecule (LFA-1) expression by T cells, and downregulation of cytotoxic T cell lytic potential. IL-4 treatment markedly reduced the infiltration of CD8+ T cells and brain pathology. STAT6, PI3K-Akt-NF-κB, and Src signaling mediated the cellular and molecular events that contributed to the IL-4-dependent decrease in parasitemia. Overall, our results provide mechanistic insights into how IL-4 treatment mitigates experimental CM and have implications in developing treatment strategies for organ-specific fatal malaria.


Subject(s)
Antimalarials/therapeutic use , Brain/pathology , Interleukin-4/therapeutic use , Malaria, Cerebral/immunology , Plasmodium falciparum/physiology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cytotoxicity, Immunologic , Humans , Inflammation , Malaria, Cerebral/therapy , Mice , Mice, Inbred C57BL , Models, Animal , Parasitemia , Signal Transduction
9.
J Biol Chem ; 295(52): 18589-18603, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33122198

ABSTRACT

VAR2CSA is the placental-malaria-specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Glycosaminoglycans/metabolism , Placenta/metabolism , Plasmodium falciparum/metabolism , Crystallography, X-Ray , Female , Humans , Models, Molecular , Pregnancy , Protein Binding , Protein Conformation , Protein Domains
10.
Parasitol Res ; 119(3): 1043-1056, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31754856

ABSTRACT

The aim of this study was to assess the clinical profile, severity and complications of patients suffering from malaria in Mangaluru, a southwestern coastal city in India. A total of 579 patients, who were treated at the District Wenlock Hospital, Mangaluru, and 168 healthy controls were recruited in this study. The clinical profile, haematological and biochemical parameters, and disease complications were assessed. The majority of patients were treated as outpatients and patients who had severe clinical conditions were admitted to the hospital for treatment and supportive care. Among the total 579 patients recruited in this study, the distribution of P. vivax, P. falciparum and mixed infections were 364 (62.9%), 150 (25.9%) and 65 (11.2%), respectively. Among these, 506 (87.4%) had mild malaria, whereas 73 (12.6%) had severe malaria. Overall, the clinical features and severity of malaria in P. vivax and mixed infection patients were comparable to P. falciparum patients, albeit with some significant differences. The clinical complications in severe malaria cases included thrombocytopenia (50.7%), metabolic acidosis (30.1%), severe anaemia (26.0%), jaundice (21.9%), hepatic dysfunction (15.1%), acute renal failure (6.8%), haematuria (8.2%), hypotension (9.6%), cerebral malaria (1.4%) and acute respiratory distress syndrome (1.4%). All the patients with severe malaria recruited in our study were successfully treated and discharged. Majority of patients had mild malaria, likely due to seeking treatment soon after experiencing symptoms and/or having preexisting immune protection. However, a significant number of patients had severe malaria and required hospital admission indicating that there is a substantial need for creating awareness among vulnerable immigrant population. Implementing effective surveillance and vector control measures in malaria hotspot locations in the city and educating people about preventive measures are likely to reduce the malaria burden in this endemic region.


Subject(s)
Malaria/blood , Malaria/pathology , Adult , Coinfection/blood , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/pathology , Female , Humans , India/epidemiology , Malaria/epidemiology , Malaria/parasitology , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification
11.
Trop Parasitol ; 9(2): 98-107, 2019.
Article in English | MEDLINE | ID: mdl-31579664

ABSTRACT

BACKGROUND AND OBJECTIVES: Dysregulated production of inflammatory cytokines might play important role in anemia during malaria infection. The objective of this study was to assess the extent of anemia due to malaria, associated complications, and inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-10) across varying anemic intensity during malaria infections. MATERIALS AND METHODS: A hospital-based cross-sectional study was conducted at District Wenlock hospital in Mangaluru city. Samples from 627 patients and 168 healthy controls (HC) were analyzed for level of hemoglobin (Hb), red blood cells (RBCs), and inflammatory cytokines. The blood cell parameters and inflammatory cytokines levels across varying intensity of anemia were analyzed using Kruskal-Wallis test and pair-wise comparison between two groups were by Mann-Whitney U-test. Correlations were calculated by Pearson's and Spearman rank correlations. RESULTS: Compared to HC, Hb, and RBC levels were significantly lower in infected patients. On comparison with mild anemia patients (Hb 8-10.9 g/dL), the levels of TNF-α and IL-6 were significantly elevated, whereas IL-10 levels were lower during severe anemia (SA) (Hb <5 g/dL). In this endemic setting, we found a strong negative association between Hb levels and parasitemia, Hb and TNF-α, and positive relationship with IL-10; anemic patients also had significantly high TNF-α/IL-10 ratios. SA was associated with complications such as acute renal failure (16.0%), jaundice (16.0%), metabolic acidosis (24.0%), hypoglycemia (12.0%), hyperparasitemia (4.0%), and hepatic dysfunction (16.0%). CONCLUSIONS: Contrary to its benign reputation, Plasmodium vivax (Pv) infections can also result in severe malarial anemia (SMA) and its associated severe complications similar to Plasmodium falciparum infections. Dysregulated inflammatory cytokine responses play an important role in the pathogenesis of SMA, especially during Pv infections.

12.
Malar Res Treat ; 2019: 4296523, 2019.
Article in English | MEDLINE | ID: mdl-31110658

ABSTRACT

BACKGROUND: Thrombocytopenia is a most commonly observed complication during malaria infections. Inflammatory cytokines such as IL-1, IL-6, and IL-10 have been documented in malaria induced thrombocytopaenia. This study was aimed to understand the possible relationship between inflammatory cytokines across varying degrees of thrombocytopenia during P. vivax, P. falciparum, and mixed infections. METHODS: A hospital-based cross sectional study was conducted at District Wenlock Hospital in Mangaluru, a city situated along the south-western coastal region of Arabian Sea in India. In this study, blood samples from 627 malaria patients were analyzed for infected parasite species, clinical conditions, platelet levels, and key cytokines that are produced in response to infection; samples from 176 uninfected healthy individuals were used as controls. RESULTS: The results of our study showed a high prevalence of malarial thrombocytopenia (platelets <150 ×103/µl) in this endemic settings. About 62.7% patients had mild-to-moderate levels of thrombocytopenia and 16% patients had severe thrombocytopenia (platelets <50 × 103/µl). Upon comparison of cytokines across varying degrees of thrombocytopenia, irrespective of infecting species, the levels of TNF-α and IL-10 were significantly higher during thrombocytopenia, whereas IL-6 levels were considerably lower in severe thrombocytopenia patients suffering from P. vivax or P. falciparum infections. The severe clinical complications observed in patients with malarial thrombocytopenia included severe anemia (17.5%), acute renal failure (12.7%), jaundice (27.0%), metabolic acidosis (36.5%), spontaneous bleeding (3.2%), hypoglycemia (25.4%), hyperparasitemia (4.8%), acute respiratory distress syndrome (1.6%), pulmonary edema (19.0%), and cerebral malaria (1.6%) in various combinations. CONCLUSION: Overall, the results of our study suggest that inflammatory cytokines influence the transformation of mild forms of thrombocytopenia into severe forms during malarial infections. Further studies are needed to understand the association of inflammatory cytokine responses with severe malaria complications and thrombocytopenia.

13.
Am J Trop Med Hyg ; 100(2): 275-279, 2019 02.
Article in English | MEDLINE | ID: mdl-30734693

ABSTRACT

Dakshina Kannada district in the Southwestern region of Karnataka state, India, including Mangaluru city is endemic to malaria. About 80% of malaria infections in Mangaluru and its surrounding areas are caused by Plasmodium vivax and the remainder is due to Plasmodium falciparum. Malaria-associated clinical complications significantly occur in this region. Here, we report the pathological conditions of 41 cases of fatal severe malaria, admitted to the district government hospital in Mangaluru city during January 2013 through December 2016. The results of clinical, hematological, and biochemical analyses showed that most of these severe malaria cases were associated with thrombocytopenia, anemia, metabolic acidosis, acute respiratory distress, and single or multi-organ dysfunction involving liver, kidney, and brain. Of the 41 fatal malaria cases, 24, 10, and seven patients had P. vivax, P. falciparum, and P. vivax and P. falciparum mixed infections, respectively. These data suggest that besides P. falciparum that is known to extensively cause severe and fatal malaria illnesses, P. vivax causes fatal illnesses substantially in this region, an observation that is consistent with recent findings in other regions.


Subject(s)
Acidosis/epidemiology , Anemia/epidemiology , Coinfection/epidemiology , Malaria, Vivax/epidemiology , Multiple Organ Failure/epidemiology , Respiratory Distress Syndrome/epidemiology , Thrombocytopenia/epidemiology , Acidosis/etiology , Acidosis/mortality , Acidosis/parasitology , Adolescent , Adult , Aged , Anemia/etiology , Anemia/mortality , Anemia/parasitology , Child , Child, Preschool , Coinfection/complications , Coinfection/mortality , Coinfection/parasitology , Female , Humans , India/epidemiology , Infant , Infant, Newborn , Malaria, Falciparum , Malaria, Vivax/complications , Malaria, Vivax/mortality , Malaria, Vivax/parasitology , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Multiple Organ Failure/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Plasmodium vivax/growth & development , Plasmodium vivax/pathogenicity , Prevalence , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/parasitology , Severity of Illness Index , Survival Analysis , Thrombocytopenia/etiology , Thrombocytopenia/mortality , Thrombocytopenia/parasitology
14.
J Vector Borne Dis ; 55(1): 1-8, 2018.
Article in English | MEDLINE | ID: mdl-29916441

ABSTRACT

Malaria, caused by the protozoan parasites of the genus Plasmodium, is a major health problem in many countries of the world. Five parasite species namely, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, cause malaria in humans. Of these, P. falciparum and P. vivax are the most prevalent and account for the majority of the global malaria cases. In most areas of Africa, P. vivax infection is essentially absent because of the inherited lack of Duffy antigen receptor for chemokines on the surface of red blood cells that is involved in the parasite invasion of erythrocytes. Therefore, in Africa, most malaria infections are by P. falciparum and the highest burden of P. vivax infection is in Southeast Asia and South America. Plasmodium falciparum is the most virulent and as such, it is responsible for the majority of malarial mortality, particularly in Africa. Although, P. vivax infection has long been considered to be benign, recent studies have reported life-threatening consequences, including acute respiratory distress syndrome, cerebral malaria, multi-organ failure, dyserythropoiesis and anaemia. Despite exhibiting low parasite biomass in infected people due to parasite's specificity to infect only reticulocytes, P. vivax infection triggers higher inflammatory responses and exacerbated clinical symptoms than P. falciparum, such as fever and chills. Another characteristic feature of P. vivax infection, compared to P. falciparum infection, is persistence of the parasite as dormant liver-stage hypnozoites, causing recurrent episodes of malaria. This review article summarizes the published information on P. vivax epidemiology, drug resistance and pathophysiology.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Vivax/epidemiology , Malaria, Vivax/physiopathology , Plasmodium vivax/drug effects , Pregnancy Complications, Parasitic/epidemiology , Antimalarials/adverse effects , Antimalarials/therapeutic use , Asia, Southeastern/epidemiology , Female , Humans , Inflammation/parasitology , Liver/parasitology , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Male , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Pregnancy , Pregnancy Complications, Parasitic/physiopathology , Recurrence , South America/epidemiology
15.
J Biol Chem ; 293(27): 10425-10434, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29666186

ABSTRACT

Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce a Th1-promoting cytokine, interleukin (IL)-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11chiMHCIIhiCD3ϵ-CD49b-CD19-FcϵRI- DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo, favoring Th2, and il-4-deficient DC were unable to induce IL-4 expression by T cells. Interestingly, lethal parasites, Plasmodium falciparum and Plasmodium berghei ANKA, induced IL-4 response primarily by CD8α- DC, whereas nonlethal Plasmodium yoelii induced IL-4 by both CD8α+ and CD8α- DC. In both P. berghei ANKA- and P. yoelii-infected mice, IL-4-expressing CD8α- DC did not express IL-12, but a distinct CD8α- DC subset expressed IL-12. In P. berghei ANKA infection, CD8α+ DC expressed IL-12 but not IL-4, whereas in P. yoelii infection, CD8α+ DC expressed IL-4 but not IL-12. These differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development.


Subject(s)
Dendritic Cells/immunology , Interleukin-4/metabolism , Malaria/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/metabolism , Th2 Cells/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Interleukin-4/physiology , Malaria/metabolism , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Protozoan Proteins/genetics , Signal Transduction , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/parasitology , Th2 Cells/metabolism , Th2 Cells/parasitology , Toll-Like Receptor 2/physiology , Toll-Like Receptor 4/physiology , Toll-Like Receptor 9/physiology
16.
Malar J ; 17(1): 167, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661235

ABSTRACT

BACKGROUND: Genes encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) are the targets of sulfadoxine-pyrimethamine (SP) present in artemisinin based combination therapy (ACT; artesunate + sulfadoxine pyrimethamine) for Plasmodium falciparum. Although SP is generally not used to treat vivax infection, mutations in dhfr and dhps that confer antifolate resistance in Plasmodium vivax are common; which may be attributed to its sympatric existence with P. falciparum. Current study was aimed to determine the pattern of mutations in dhfr and dhps in P. vivax isolates from Mangaluru region. METHODS: A total of 140 blood samples were collected from P. vivax-infected people attending Wenlock Hospital Mangaluru during July 2014 to January 2016. Out of 140 isolates, 25 (18%) and 50 (36%) isolates were selected randomly for sequence analysis of pvdhfr and pvdhps genes respectively. Fragment of pvdhps and full length pvdhfr were amplified, sequenced and analysed for single nucleotide polymorphisms. dhps was analysed by PCR-RFLP also, to detect the two specific mutations (A383G and A553G). RESULTS: Analysis of pvdhps sequences from 50 isolates revealed single and double mutants at 38 and 46% respectively. Three non-synonymous mutations (K55R, S58R and S117N) were identified for pvdhfr. Among these, K55R was detected for the first time. CONCLUSIONS: The current study indicates that P. vivax dhps and dhfr mutant alleles are prevalent in this area, suggesting significant SP pressure.


Subject(s)
Dihydropteroate Synthase/genetics , Mutation , Plasmodium vivax/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Dihydropteroate Synthase/metabolism , India , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Protozoan Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism
17.
Malar J ; 17(1): 40, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29351800

ABSTRACT

BACKGROUND: Malaria is highly prevalent in many parts of India and is mostly caused by the parasite species Plasmodium vivax followed by Plasmodium falciparum. Chloroquine (CQ) is the first-line treatment for blood stage P. vivax parasites, but cases of drug resistance to CQ have been reported from India. One of the surveillance strategies which is used to monitor CQ drug resistance, is the analysis of single nucleotide polymorphisms (SNPs) of the associated gene markers. Susceptibility to CQ can also be determined by copy number assessment of multidrug resistant gene (mdr-1). The current study has examined the prevalence of SNPs in P. vivax orthologs of P. falciparum chloroquine resistant and multi-drug resistant genes (pvcrt-o and pvmdr-1, respectively) and pvmdr-1 copy number variations in isolates from the highly endemic Mangaluru city near the South Western Coastal region of India. METHODS: A total of 140 blood samples were collected from P. vivax infected patients attending Wenlock Hospital Mangaluru during July 2014 to January 2016. Out of these 140 samples, sequencing was carried out for 54 (38.5%) and 85 (60.7%) isolates for pvcrt-o and pvmdr-1, respectively. Single nucleotide polymorphisms (SNPs) in the pvcrt-o and pvmdr-1 genes were analysed by direct sequencing method, while copy number variations of 60 isolates (42. 8%) were determined by real time PCR. RESULTS: Out of 54 clinical isolates analysed for pvcrt-o, three (5.6%) showed K10 insertion and the rest had wild type sequence. This is the first report to show K10 insertion in P. vivax isolates from India. Further, out of 85 clinical isolates of P. vivax analysed for mutations in pvmdr-1 gene, only one isolate had wild type sequence (~ 1%) while the remaining (99%) carried mutant alleles. Seven non-synonymous mutations with two novel mutations (I946V and Y1028C) were observed. Of all the observed mutations in pvmdr-1 gene, T958M was most highly prevalent (present in 90% of samples) followed by F1076L (76%), and Y976F (7%). Amplification of pvmdr-1 gene was observed in 31.6% of the isolates, out of 60 amplified. CONCLUSION: The observed variations both in pvmdr-1 and pvcrt-o genes indicate a trend towards parasite acquiring CQ resistance in this endemic area.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Membrane Transport Proteins/genetics , Plasmodium vivax/genetics , Polymorphism, Single Nucleotide/drug effects , Protozoan Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , DNA Copy Number Variations , India/epidemiology , Malaria, Vivax/epidemiology , Membrane Transport Proteins/metabolism , Plasmodium vivax/drug effects , Protozoan Proteins/metabolism
18.
Front Immunol ; 9: 3006, 2018.
Article in English | MEDLINE | ID: mdl-30619355

ABSTRACT

Malaria caused by the Plasmodium family of parasites, especially P.falciparum and P. vivax, is a major health problem in many countries in the tropical and subtropical regions of the world. The disease presents a wide array of systemic clinical conditions and several life-threatening organ pathologies, including the dreaded cerebral malaria. Like many other infectious diseases, malaria is an inflammatory response-driven disease, and positive outcomes to infection depend on finely tuned regulation of immune responses that efficiently clear parasites and allow protective immunity to develop. Immune responses initiated by the innate immune system in response to parasites play key roles both in protective immunity development and pathogenesis. Initial pro-inflammatory responses are essential for clearing infection by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged pro-inflammatory responses owing to inappropriate cellular programming contribute to disease conditions. A comprehensive knowledge of the molecular and cellular mechanisms that initiate immune responses and how these responses contribute to protective immunity development or pathogenesis is important for developing effective therapeutics and/or a vaccine. Historically, in efforts to develop a vaccine, immunity to malaria was extensively studied in the context of identifying protective humoral responses, targeting proteins involved in parasite invasion or clearance. The innate immune response was thought to be non-specific. However, during the past two decades, there has been a significant progress in understanding the molecular and cellular mechanisms of host-parasite interactions and the associated signaling in immune responses to malaria. Malaria infection occurs at two stages, initially in the liver through the bite of a mosquito, carrying sporozoites, and subsequently, in the blood through the invasion of red blood cells by merozoites released from the infected hepatocytes. Soon after infection, both the liver and blood stage parasites are sensed by various receptors of the host innate immune system resulting in the activation of signaling pathways and production of cytokines and chemokines. These immune responses play crucial roles in clearing parasites and regulating adaptive immunity. Here, we summarize the knowledge on molecular mechanisms that underlie the innate immune responses to malaria infection.


Subject(s)
Host-Parasite Interactions/immunology , Immunity, Innate , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium/immunology , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Culicidae/parasitology , Disease Vectors , Hepatocytes/immunology , Hepatocytes/parasitology , Humans , Liver/cytology , Liver/immunology , Liver/parasitology , Malaria/blood , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/administration & dosage , Merozoites/immunology , Merozoites/pathogenicity , Plasmodium/genetics , Plasmodium/metabolism , Plasmodium/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Sporozoites/immunology , Sporozoites/pathogenicity
19.
Malar J ; 16(1): 492, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258505

ABSTRACT

BACKGROUND: Malaria is highly prevalent in many parts of India and the Indian subcontinent. Mangaluru, a city in the southwest coastal region of Karnataka state in India, and surrounding areas are malaria endemic with 10-12 annual parasite index. Despite high endemicity, to-date, very little has been reported on the epidemiology and burden of malaria in this area. METHODS: A cross-sectional surveillance of malaria cases was performed among 900 febrile symptomatic native people (long-time residents) and immigrant labourers (temporary residents) living in Mangaluru city area. During each of dry, rainy, and end of rainy season, blood samples from a group of 300 randomly selected symptomatic people were screened for malaria infection. Data on socio-demographic, literacy, knowledge of malaria, and treatment-seeking behaviour were collected to understand the socio-demographic contributions to malaria menace in this region. RESULTS: Malaria is prevalent in Mangaluru region throughout the year and Plasmodium vivax is predominant species compared to Plasmodium falciparum. The infection frequency was found to be high during rainy season. Infections were markedly higher in males than females, and in adults aged 16-45 years than both younger and older age groups. Also, malaria incidence was high among immigrants compared to native population. In both groups, infection rate was directly correlated with their literacy level, knowledge on malaria, dwelling environment, and protective measures used. There was also a significant difference in treatment-seeking behaviour between these two groups. CONCLUSIONS: Malaria incidences in Mangaluru region are predominantly localized to certain hotspot areas within the city, where socioeconomically underprivileged and immigrant labourers are densely populated. These areas have inadequate sanitation and constant water stagnation, harbouring high vector density and contributing to high infection incidences. Additionally, people in these areas seldom practice preventive measures such as using bed nets. The high incidences of malaria in adults are due to minimal cloth wearing, and long working hours stretching to late evenings in places with high vector density. Instituting heightened preventive public measures by governments and creating awareness on using preventive protective and environmental hygienic measures through educational programmes may substantially reduce the risk of contracting infections in these areas and spreading to other areas.


Subject(s)
Epidemiological Monitoring , Malaria/epidemiology , Malaria/parasitology , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Incidence , India/epidemiology , Infant , Male , Middle Aged , Prevalence , Young Adult
20.
Article in English | MEDLINE | ID: mdl-28820051

ABSTRACT

BACKGROUND: Studies on anti-inflammatory and antimicrobial agents remains a challenging and important area in medicinal chemistry research due to more toxic and rapid development of resistance against first effective drugs. In search of novel anti-inflammatory and antimicrobials agents, bisthiourea derivatives of dipeptide conjugated to 6-fluoro-3- (piperidin-4-yl)benzo[d]isoxazole were synthesized. METHODS: The peptides were synthesized by solution phase method and conjugated to 6- fluoro-3-(piperidin-4-yl)benzo[d]isoxazole using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDCI)/hydroxybenzotriazole (HOBt) as a coupling agent and N-methylmorpholine (NMM) as a base. The protecting group, 2-chlorobenzyloxycarbonyl (2-ClZ) and tertbutyloxycarbonyl (Boc) were deblocked and further reacted with substituted phenyl isothiocyanates to obtain bisthiourea derivatives. RESULTS: The molecules 1-24 were examined for their in vitro anti-inflammatory activity by employing human erythrocyte suspension test and it was found that the IC50 values of 9, 12, 21 and 24 were lower than the IC50 of standard references indomethacin and ibuprofen. Further, all the molecules were also evaluated for their in vitro antibacterial and antifungal activities against various pathogens of human origin by agar well diffusion method. In addition, binding interaction of active molecules (7-12 and 19-24) was performed on active site of cyclooxygenase-2 (COX-2) and Staphylococcus aureus (SA) TyrRS showing good binding profile. CONCLUSION: Molecular docking result, along with the biological assay data, revealed that the compounds containing electron withdrawing group (F) on phenyl ring of thiourea moiety were potential anti-inflammatory and antimicrobial agents.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Dipeptides/pharmacology , Isoxazoles/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Cyclooxygenase 2/metabolism , Dipeptides/chemistry , Erythrocytes/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Fusarium/drug effects , Fusarium/growth & development , Hemolysis/drug effects , Humans , Isoxazoles/chemistry , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...