Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 13(1): 20869, 2023 11 27.
Article En | MEDLINE | ID: mdl-38012217

Circulating miRNAs have potential as minimally invasive biomarkers for diagnosing various diseases, including ageing-related disorders such as Alzheimer's disease (AD). However, the lack of standardization in the common analysis method, RT-qPCR, and specifically in the normalization step, has resulted in inconsistent data across studies, hindering miRNA clinical implementation as well as basic research. To address this issue, this study proposes an optimized protocol for key steps in miRNA profiling, which incorporates absorbance-based haemolysis detection for assessing sample quality, double spike-in controls for miRNA isolation and reverse transcription, and the use of 7 stable normalizers verified in an aging population, including healthy subjects and individuals at different stages of Alzheimer's disease (140 subjects). The stability of these 7 normalizers was demonstrated using our novel method called BestmiRNorm for identifying optimal normalizers. BestmiRNorm, developed utilizing the Python programming language, enables the assessment of up to 11 potential normalizers. The standardized application of this optimized RT-qPCR protocol and the recommended normalizers are crucial for the development of miRNAs as biomarkers for AD and other ageing-related diseases in clinical diagnostics and basic research.


Alzheimer Disease , Circulating MicroRNA , MicroRNAs , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , MicroRNAs/genetics , Biomarkers , Aging/genetics , Gene Expression Profiling/methods
3.
Cancers (Basel) ; 14(15)2022 Jul 27.
Article En | MEDLINE | ID: mdl-35892900

The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients' stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 µM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38- subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.

4.
Blood Adv ; 6(6): 1879-1894, 2022 03 22.
Article En | MEDLINE | ID: mdl-35130345

Chronic and acute myeloid leukemia evade immune system surveillance and induce immunosuppression by expanding proleukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse, and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector proleukemic Tregs. Using mouse model of leukemia-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, and IL21R and included 2 distinct effector Treg (eTreg) subsets: CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive Tregs and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms.


4-1BB Ligand/immunology , Extracellular Vesicles , Leukemia, Myeloid, Acute , Animals , Extracellular Vesicles/metabolism , Immunosuppressive Agents/therapeutic use , Ki-1 Antigen/metabolism , Leukemia, Myeloid, Acute/drug therapy , Mice , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory
5.
EBioMedicine ; 74: 103691, 2021 Dec.
Article En | MEDLINE | ID: mdl-34773891

Alzheimer's disease (AD) represents a particular therapeutic challenge because its aetiology is very complex, with dynamic progression from preclinical to clinical stages. Several potential therapeutic targets and strategies were tested for AD, in over 2000 clinical trials, but no disease-modifying therapy exists. This failure indicates that AD, as a multifactorial disease, may require multi-targeted approaches and the delivery of therapeutic molecules to the right place and at the right disease stage. Opportunities to meet the challenges of AD therapy appear to come from recent progress in knowledge and methodological advances in the design, synthesis, and targeting of brain mRNA and microRNA with synthetic antisense oligonucleotides (ASOs). Several types of ASOs allow the utilisation of different mechanisms of posttranscriptional regulation and offer enhanced effects over alternative therapeutics. This article reviews ASO-based approaches and targets in preclinical and clinical trials for AD, and presents the future perspective on ASO therapies for AD.


Alzheimer Disease/genetics , MicroRNAs/genetics , Oligonucleotides, Antisense/pharmacology , RNA, Messenger/genetics , Alzheimer Disease/drug therapy , Brain Chemistry , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , MicroRNAs/antagonists & inhibitors , Molecular Targeted Therapy , RNA, Messenger/antagonists & inhibitors
...