Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(5): 168458, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38280482

ABSTRACT

Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.


Subject(s)
Bacterial Proteins , Flavoproteins , Photoreceptors, Microbial , Pseudomonas fluorescens , Light , Oxygen , Signal Transduction , Solvents , Flavoproteins/chemistry , Flavoproteins/genetics , Flavoproteins/metabolism , Protein Domains , Protein Conformation, alpha-Helical , Pseudomonas fluorescens/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Optogenetics , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Mutation , Crystallography, X-Ray
2.
Photochem Photobiol Sci ; 22(4): 713-727, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36480084

ABSTRACT

Light, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch). Such mutations, however, should ideally only influence sensor kinetics, while being benign with regard to the nature of the structural changes that are induced by illumination, i.e., they should not result in a disruption of signal transduction. In the present study, we identify a conserved hydrophobic pocket for which mutations have a strong impact on the adduct-state lifetime across different LOV photoreceptor families. Using the slow cycling bacterial short LOV photoreceptor PpSB1-LOV, we show that the I48T mutation within this pocket, which accelerates adduct rupture, is otherwise structurally and mechanistically benign, i.e., light-induced structural changes, as probed by NMR spectroscopy and X-ray crystallography, are not altered in the variant. Additional mutations within the pocket of PpSB1-LOV and the introduction of homologous mutations in the LOV photoreceptor YtvA of Bacillus subtilis and the Avena sativa LOV2 domain result in similarly altered kinetics. Given the conserved nature of the corresponding structural region, the here identified mutations should find application in dark-recovery tuning of optogenetic tools and LOV photoreceptors, alike.


Subject(s)
Photoreceptors, Microbial , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/chemistry , Oxygen/chemistry , Photochemistry , Mutation , Magnetic Resonance Spectroscopy , Light
3.
Elife ; 112022 05 10.
Article in English | MEDLINE | ID: mdl-35536643

ABSTRACT

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.


Subject(s)
Phospholipids , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Glycerophospholipids/metabolism , Membrane Proteins , Phospholipases A , Pseudomonas aeruginosa/metabolism , Virulence Factors/metabolism
4.
J Biol Chem ; 296: 100662, 2021.
Article in English | MEDLINE | ID: mdl-33862085

ABSTRACT

Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.


Subject(s)
Bacterial Proteins/chemistry , Chloroflexus/metabolism , Flavins/metabolism , Luminescent Proteins/chemistry , Mutant Proteins/chemistry , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloroflexus/growth & development , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Dynamics Simulation , Mutagenesis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Photochemistry , Protein Conformation , Quantum Theory
5.
FEBS J ; 288(16): 4955-4972, 2021 08.
Article in English | MEDLINE | ID: mdl-33621443

ABSTRACT

The primary photochemistry is similar among the flavin-bound sensory domains of light-oxygen-voltage (LOV) photoreceptors, where upon blue-light illumination a covalent adduct is formed on the microseconds time scale between the flavin chromophore and a strictly conserved cysteine residue. In contrast, the adduct-state decay kinetics vary from seconds to days or longer. The molecular basis for this variation among structurally conserved LOV domains is not fully understood. Here, we selected PpSB2-LOV, a fast-cycling (τrec 3.5 min, 20 °C) short LOV protein from Pseudomonas putida that shares 67% sequence identity with a slow-cycling (τrec 2467 min, 20 °C) homologous protein PpSB1-LOV. Based on the crystal structure of the PpSB2-LOV in the dark state reported here, we used a comparative approach, in which we combined structure and sequence information with molecular dynamic (MD) simulations to address the mechanistic basis for the vastly different adduct-state lifetimes in the two homologous proteins. MD simulations pointed toward dynamically distinct structural region, which were subsequently targeted by site-directed mutagenesis of PpSB2-LOV, where we introduced single- and multisite substitutions exchanging them with the corresponding residues from PpSB1-LOV. Collectively, the data presented identify key amino acids on the Aß-Bß, Eα-Fα loops, and the Fα helix, such as E27 and I66, that play a decisive role in determining the adduct lifetime. Our results additionally suggest a correlation between the solvent accessibility of the chromophore pocket and adduct-state lifetime. The presented results add to our understanding of LOV signaling and will have important implications in tuning the signaling behavior (on/off kinetics) of LOV-based optogenetic tools.


Subject(s)
Bacterial Proteins/chemistry , Oxygen/chemistry , Pseudomonas putida/metabolism , Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Oxygen/metabolism , Photochemical Processes , Protein Conformation
6.
Sci Rep ; 10(1): 10938, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616825

ABSTRACT

Termination of the G-protein-coupled receptor signaling involves phosphorylation of its C-terminus and subsequent binding of the regulatory protein arrestin. In the visual system, arrestin-1 preferentially binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. Here, we have investigated binding of a synthetic phosphopeptide of bovine rhodopsin (residues 323-348) to the active variants of visual arrestin-1: splice variant p44, and the mutant R175E. Unlike the wild type arrestin-1, both these arrestins are monomeric in solution. Solution structure analysis using small angle X-ray scattering supported by size exclusion chromatography results reveal dimerization in both the arrestins in the presence of phosphopeptide. Our results are the first report, to our knowledge, on receptor-induced oligomerization in arrestin, suggesting possible roles for the cellular function of arrestin oligomers. Given high structural homology and the similarities in their activation mechanism, these results are expected to have implications for all arrestin isoforms.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Protein Multimerization , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Cattle , Crystallography, X-Ray , Phosphorylation , Protein Binding , Structure-Activity Relationship
7.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 270-277, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30950828

ABSTRACT

The human membrane-bound α/ß-hydrolase domain 6 (ABHD6) protein modulates endocannabinoid signaling, which controls appetite, pain and learning, as well as being linked to Alzheimer's and Parkinson's diseases, through the degradation of the key lipid messenger 2-arachidonylglycerol (2-AG). This makes ABHD6 an attractive therapeutic target that lacks structural information. In order to better understand the molecular mechanism of 2-AG-hydrolyzing enzymes, the PA2949 protein from Pseudomonas aeruginosa, which has 49% sequence similarity to the ABHD6 protein, was cloned, overexpressed, purified and crystallized. Overexpression of PA2949 in the homologous host yielded the membrane-bound enzyme, which was purified in milligram amounts. Besides their sequence similarity, the enzymes both show specificity for the hydrolysis of 2-AG and esters of medium-length fatty acids. PA2949 in the presence of n-octyl ß-D-glucoside showed a higher activity and stability at room temperature than those previously reported for PA2949 overexpressed and purified from Escherichia coli. A suitable expression host and stabilizing detergent were crucial for obtaining crystals, which belonged to the tetragonal space group I4122 and diffracted to a resolution of 2.54 Å. This study provides hints on the functional similarity of ABHD6-like proteins in prokaryotes and eukaryotes, and might guide the structural study of these difficult-to-crystallize proteins.


Subject(s)
Esterases/chemistry , Esterases/isolation & purification , Monoacylglycerol Lipases/chemistry , Pseudomonas aeruginosa/enzymology , Sequence Homology, Amino Acid , Amino Acid Sequence , Crystallization , Enzyme Stability , Humans , Kinetics , Substrate Specificity , Temperature
8.
Sci Rep ; 9(1): 54, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30631134

ABSTRACT

Sterile alpha motif (SAM) domains are protein interaction modules that are involved in a diverse range of biological functions such as transcriptional and translational regulation, cellular signalling, and regulation of developmental processes. SH3 domain-containing protein expressed in lymphocytes 1 (SLy1) is involved in immune regulation and contains a SAM domain of unknown function. In this report, the structure of the SLy1 SAM domain was solved and revealed that this SAM domain forms a symmetric homodimer through a novel interface. The interface consists primarily of the two long C-terminal helices, α5 and α5', of the domains packing against each other. The dimerization is characterized by a dissociation constant in the lower micromolar range. A SLy1 SAM domain construct with an extended N-terminus containing five additional amino acids of the SLy1 sequence further increases the stability of the homodimer, making the SLy1 SAM dimer two orders of magnitude more stable than previously studied SAM homodimers, suggesting that the SLy1 SAM dimerization is of functional significance. The SLy1 SAM homodimer contains an exposed mid-loop surface on each monomer, which may provide a scaffold for mediating interactions with other SAM domain-containing proteins via a typical mid-loop-end-helix interface.


Subject(s)
Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Protein Multimerization , Sterile Alpha Motif , Protein Conformation
9.
Biochemistry ; 57(32): 4833-4847, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29989797

ABSTRACT

Light, oxygen, voltage (LOV) proteins, a ubiquitously distributed class of photoreceptors, regulate a wide variety of light-dependent physiological responses. Because of their modular architecture, LOV domains, i.e., the sensory domains of LOV photoreceptors, have been widely used for the construction of optogenetic tools. We recently described the structure and function of a short LOV protein (DsLOV) from the marine phototropic bacterium Dinoroseobacter shibae, for which, in contrast to other LOV photoreceptors, the dark state represents the physiologically relevant signaling state. Among bacterial LOV photoreceptors, DsLOV possesses an exceptionally fast dark recovery, corroborating its function as a "dark" sensor. To address the mechanistic basis of this unusual characteristic, we performed a comprehensive mutational, kinetic, thermodynamic, and structural characterization of DsLOV. The mechanistic basis of the fast dark recovery of the protein was revealed by mutation of the previously noted uncommon residue substitution at position 49 found in DsLOV. The substitution of M49 with different residues that are naturally conserved in LOV domains tuned the dark-recovery time of DsLOV over 3 orders of magnitude, without grossly affecting its overall structure or the light-dependent structural change observed for the wild-type protein. Our study thus provides a striking example of how nature can achieve LOV photocycle tuning by subtle structural alterations in the LOV domain active site, highlighting the easy evolutionary adaptability of the light sensory function. At the same time, our data provide guidance for the mutational photocycle tuning of LOV domains, with relevance for the growing field of optogenetics.


Subject(s)
Bacterial Proteins/chemistry , Light , Oxygen/chemistry , Rhodobacteraceae/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Circular Dichroism , Crystallography, X-Ray , Kinetics , Mutagenesis, Site-Directed , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Protein Conformation , Pseudomonas putida/chemistry , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Rhodobacteraceae/genetics , Rhodobacteraceae/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
10.
PLoS One ; 13(7): e0200746, 2018.
Article in English | MEDLINE | ID: mdl-30011332

ABSTRACT

Light, oxygen, voltage (LOV) photoreceptors consist of conserved photo-responsive domains in bacteria, archaea, plants and fungi, and detect blue-light via a flavin cofactor. We investigated the blue-light induced conformational transition of the dimeric photoreceptor PpSB1-LOV-R66I from Pseudomonas putida in solution by using small-angle X-ray scattering (SAXS). SAXS experiments of the fully populated light- and dark-states under steady-state conditions revealed significant structural differences between the two states that are in agreement with the known structures determined by crystallography. We followed the transition from the light- to the dark-state by using SAXS measurements in real-time. A two-state model based on the light- and dark-state conformations could describe the measured time-course SAXS data with a relaxation time τREC of ~ 34 to 35 min being larger than the recovery time found with UV/vis spectroscopy. Unlike the flavin chromophore-based UV/vis method that is sensitive to the local chromophore environment in flavoproteins, SAXS-based assay depends on protein conformational changes and provides with an alternative to measure the recovery kinetics.


Subject(s)
Flavoproteins/metabolism , Oxygen/metabolism , Photoreceptors, Microbial/metabolism , Pseudomonas putida/metabolism , Scattering, Small Angle , Bacterial Proteins/metabolism , Crystallography, X-Ray , Flavin Mononucleotide/chemistry , Kinetics , Protein Domains , Protein Structure, Secondary , Spectrophotometry, Ultraviolet , X-Ray Diffraction
11.
Methods Cell Biol ; 142: 159-172, 2017.
Article in English | MEDLINE | ID: mdl-28964334

ABSTRACT

Protein purity and yield are two critical parameters for successful protein characterization using structural techniques such as X-ray crystallography, NMR, and several other biophysical methods. The yeast Saccharomyces cerevisiae is one of the popular eukaryotic model systems for overexpression and subsequent purification of recombinant proteins. Here, we describe a protocol for cloning, overexpression, purification, and crystallization of arrestin-1 and its splice variant p44 from yeast. The purification protocol involves a single-affinity chromatography step on a Strep-Tactin column. Highly purified arrestins can be concentrated up to 15mg/mL using ultrafiltration and can be stored in the frozen state for several months without any loss of functionality.


Subject(s)
Arrestin/chemistry , Arrestin/isolation & purification , Chromatography, Affinity/methods , Saccharomyces cerevisiae/metabolism , Arrestin/genetics , Chromatography, Affinity/instrumentation , Crystallization/methods , Protein Splicing , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Ultrafiltration
12.
Sci Rep ; 7: 42971, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211532

ABSTRACT

Unique features of Light-Oxygen-Voltage (LOV) proteins like relatively small size (~12-19 kDa), inherent modularity, highly-tunable photocycle and oxygen-independent fluorescence have lately been exploited for the generation of optical tools. Structures of LOV domains reported so far contain a flavin chromophore per protein molecule. Here we report two new findings on the short LOV protein W619_1-LOV from Pseudomonas putida. First, the apo-state crystal structure of W619_1-LOV at 2.5 Å resolution reveals conformational rearrangements in the secondary structure elements lining the chromophore pocket including elongation of the Fα helix, shortening of the Eα-Fα loop and partial unfolding of the Eα helix. Second, the apo W619_1-LOV protein binds both natural and structurally modified flavin chromophores. Remarkably different photophysical and photochemical properties of W619_1-LOV bound to 7-methyl-8-chloro-riboflavin (8-Cl-RF) and lumichrome imply application of these variants as novel optical tools as they offer advantages such as no adduct state formation, and a broader choice of wavelengths for in vitro studies.


Subject(s)
Bacterial Proteins/chemistry , Pseudomonas putida/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectrometry, Fluorescence
13.
FEBS Open Bio ; 6(5): 484-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27419054

ABSTRACT

Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of ß-acetylthioisobutyrate to produce the (D)-enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane-associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X-100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137-His258-Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield.

14.
J Mol Biol ; 428(19): 3721-36, 2016 09 25.
Article in English | MEDLINE | ID: mdl-27291287

ABSTRACT

Light-Oxygen-Voltage (LOV) domains represent the photo-responsive domains of various blue-light photoreceptor proteins and are widely distributed in plants, algae, fungi, and bacteria. Here, we report the dark-state crystal structure of PpSB1-LOV, a slow-reverting short LOV protein from Pseudomonas putida that is remarkably different from our previously published "fully light-adapted" structure [1]. A direct comparison of the two structures provides insight into the light-activated signaling mechanism. Major structural differences involve a~11Å movement of the C terminus in helix Jα, ~4Å movement of Hß-Iß loop, disruption of hydrogen bonds in the dimer interface, and a~29° rotation of chain-B relative to chain-A as compared to the light-state dimer. Both crystal structures and solution NMR data are suggestive of the key roles of a conserved glutamine Q116 and the N-cap region consisting of A'α-Aß loop and the A'α helix in controlling the light-activated conformational changes. The activation mechanism proposed here for the PpSB1-LOV supports a rotary switch mechanism and provides insights into the signal propagation mechanism in naturally existing and artificial LOV-based, two-component systems and regulators.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Light Signal Transduction , Pseudomonas putida/enzymology , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular , Protein Conformation
15.
Sci Rep ; 5: 15808, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510463

ABSTRACT

Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.


Subject(s)
Arrestin/chemistry , Amino Acid Substitution , Arginine , Arrestin/genetics , Crystallography, X-Ray , Humans , Mutation, Missense , Protein Structure, Tertiary , Structure-Activity Relationship
16.
BMC Microbiol ; 15: 30, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25887755

ABSTRACT

BACKGROUND: Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. RESULTS: Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the ß-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of ß strands in the N- and C-terminal ends of the LOV core domain. CONCLUSIONS: The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Rhodobacteraceae/chemistry , Aquatic Organisms/chemistry , Aquatic Organisms/growth & development , Crystallization/methods , Crystallography, X-Ray , DNA Mutational Analysis , Models, Molecular , Phototrophic Processes , Pigments, Biological/metabolism , Protein Conformation , Protein Multimerization , Rhodobacteraceae/growth & development
17.
PLoS One ; 8(7): e69125, 2013.
Article in English | MEDLINE | ID: mdl-23874889

ABSTRACT

TesA from Pseudomonas aeruginosa belongs to the GDSL hydrolase family of serine esterases and lipases that possess a broad substrate- and regiospecificity. It shows high sequence homology to TAP, a multifunctional enzyme from Escherichia coli exhibiting thioesterase, lysophospholipase A, protease and arylesterase activities. Recently, we demonstrated high arylesterase activity for TesA, but only minor thioesterase and no protease activity. Here, we present a comparative analysis of TesA and TAP at the structural, biochemical and physiological levels. The crystal structure of TesA was determined at 1.9 Å and structural differences were identified, providing a possible explanation for the differences in substrate specificities. The comparison of TesA with other GDSL-hydrolase structures revealed that the flexibility of active-site loops significantly affects their substrate specificity. This assumption was tested using a rational approach: we have engineered the putative coenzyme A thioester binding site of E. coli TAP into TesA of P. aeruginosa by introducing mutations D17S and L162R. This TesA variant showed increased thioesterase activity comparable to that of TAP. TesA is the first lysophospholipase A described for the opportunistic human pathogen P. aeruginosa. The enzyme is localized in the periplasm and may exert important functions in the homeostasis of phospholipids or detoxification of lysophospholipids.


Subject(s)
Lysophospholipase/chemistry , Lysophospholipase/genetics , Models, Molecular , Protein Conformation , Pseudomonas aeruginosa/enzymology , Catalytic Domain/genetics , Cloning, Molecular , Crystallization , Electrophoresis, Polyacrylamide Gel , Genetic Vectors/genetics , Kinetics , Lysophospholipase/metabolism , Mutagenesis, Site-Directed , Oligonucleotides/genetics , X-Ray Diffraction
18.
Biochem Pharmacol ; 85(1): 38-45, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23085438

ABSTRACT

Malaria causes millions of death cases per year. Since Plasmodium falciparum rapidly develops drug resistance, it is of high importance to investigate potential drug targets which may lead to novel rational therapy approaches. Here we report on the interaction of translationally controlled tumor protein of P. falciparum (PfTCTP) with the anti-malarial drug artemisinin. Furthermore, we investigated the crystal structure of PfTCTP. Using mass spectrometry, bioinformatic approaches and surface plasmon resonance spectroscopy, we identified novel binding sites of artemisinin which are in direct neighborhood to amino acids 19-46, 108-134 and 140-163. The regions covered by these residues are known to be functionally important for TCTP function. We conclude that interaction of artemisinin with TCTP may be at least in part explain the antimalarial activity of artemisinin.


Subject(s)
Antimalarials/chemistry , Artemisinins/chemistry , Biomarkers, Tumor/chemistry , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry , Binding Sites , Biomarkers, Tumor/metabolism , Computer Simulation , Crystallography, X-Ray , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Surface Plasmon Resonance , Tumor Protein, Translationally-Controlled 1
19.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 6): 686-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22683791

ABSTRACT

Parasitic organisms are constantly challenged by the defence mechanisms of their respective hosts, which often depend on serine protease activities. Consequently, protease inhibitors such as those belonging to the serpin superfamily have emerged as protective elements that support the survival of the parasites. This report describes the crystal structure of ShSPI, a serpin from the trematode Schistosoma haematobium. The protein is exposed on the surface of invading cercaria as well as of adult worms, suggesting its involvement in the parasite-host interaction. While generally conforming to the well established serpin fold, the structure reveals several distinctive features, mostly concerning the helical subdomain of the protein. It is proposed that these peculiarities are related to the unique biological properties of a small serpin subfamily which is conserved among pathogenic schistosomes.


Subject(s)
Schistosoma haematobium/chemistry , Serpins/chemistry , Amino Acid Sequence , Animals , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
20.
J Mol Biol ; 417(4): 362-74, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22326872

ABSTRACT

Blue-light photoreceptors containing light­oxygen­voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.


Subject(s)
Bacterial Proteins/chemistry , Photoreceptors, Microbial/chemistry , Pseudomonas putida/metabolism , Crystallography, X-Ray , Flavin Mononucleotide/chemistry , Light , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...