Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Front Physiol ; 15: 1363992, 2024.
Article in English | MEDLINE | ID: mdl-38827990

ABSTRACT

Leg health is a significant economic and welfare concern for the poultry industry. Current methods of detection rely on visual assessment of the legs and gait scores and bone scoring during necropsy for full characterization. Additionally, the current scoring of femurs only examines the external surface of the femoral head. Through the use of the dual-energy X-ray absorptiometry (DXA) imaging system, we show the presence of a necrotic region in the femurs that would otherwise be considered healthy based on the current evaluation procedures. Importantly, these lesions were present in almost 60% (22 of 37) of femurs that scored normal for femoral head necrosis (FHN). Additionally, these femurs showed greater bone mineral content (BMC) relative to weight compared to their counterparts with no lucent lesions (6.95% ± 0.20% vs. 6.26% ± 0.25; p = 0.038). Identification of these lesions presents both a challenge and an opportunity. These subclinical lesions are likely to be missed in routine scoring procedures for FHN and can inadvertently impact the characterization of the disease and genetic selection programs. Furthermore, this imaging system can be used for in vivo, ex vivo, and embryonic (egg) studies and, therefore, constitutes a potential non-invasive method for early detection of bone lesions in chickens and other avian species.

2.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839047

ABSTRACT

BACKGROUND: Pregnant people with COVID-19 experience higher risk for severe disease and adverse pregnancy outcomes, but no pharmacokinetic (PK) data exist to support dosing of COVID-19 therapeutics during pregnancy. We report PK and safety data for intravenous remdesivir in pregnancy. METHODS: IMPAACT 2032 was a phase IV prospective, open-label, non-randomized opportunistic study of hospitalized pregnant and non-pregnant women receiving intravenous remdesivir as part of clinical care. Intensive PK sampling was performed on infusion days 3, 4, or 5 with collection of plasma and peripheral blood mononuclear cells (PBMCs). Safety data were recorded from first infusion through 4 weeks post-last infusion and at delivery. Geometric mean ratios (GMR) (90% confidence intervals [CI]) of PK parameters between pregnant and non-pregnant women were calculated. RESULTS: Fifty-three participants initiated remdesivir (25 pregnant; median (IQR) gestational age 27.6 (24.9, 31.0) weeks). Plasma exposures of remdesivir, its two major metabolites (GS-704277 and GS-441524), and the free remdesivir fraction were similar between pregnant and non-pregnant participants. Concentrations of the active triphosphate (GS-443902) in PBMCs increased 2.04-fold (90% CI 1.35, 3.03) with each additional infusion in non-pregnant versus pregnant participants. Three adverse events in non-pregnant participants were related to treatment (one Grade 3; two Grade 2 resulting in treatment discontinuation). There were no treatment-related adverse pregnancy outcomes or congenital anomalies detected. CONCLUSIONS: Plasma remdesivir PK parameters were comparable between pregnant and non-pregnant women, and no safety concerns were identified based on our limited data. These findings suggest no dose adjustments are indicated for intravenous remdesivir during pregnancy.

3.
Psychodyn Psychiatry ; 52(2): 132-135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829231

ABSTRACT

Climate change caused by human activities is a serious threat to the survival of our species, and one that we have not yet mustered the perspective and the will to address. Our vision tends to focus on what is useful to ourselves as individuals in the short term, instead of more broadly on what is needed for the long-term good of our species. We do not consider what our purpose and role could be in the life of our planet. We do not ask "What is the point of human beings?" In this time of climate crisis, answering this question by developing a shared sense of purpose, a purpose centered on caring for the world as a whole, might give our species the perspective and will we need to survive.


Subject(s)
Climate Change , Humans
4.
Avian Pathol ; : 1-18, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38776101

ABSTRACT

RESEARCH HIGHLIGHTS: Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.

5.
Neuropeptides ; 106: 102439, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788297

ABSTRACT

Heat stress (HS) is a global serious issue in the poultry industry with numerous adverse effects, including increased stress, depressed feed intake (FI), poor growth performance and higher mortality. Herbal adaptogens, plant extracts considered as stress response modifiers, are metabolic regulators that improve an organism's ability to adapt to and minimize damage from environmental stresses. Previously, we showed that herbal adaptogen supplementation increased FI and body weight (BW) of broiler (meat-type) chickens reared under HS conditions. Therefore, we hypothesized that these effects may be mediated through modulation of hypothalamic feeding-related neuropeptides. Male Cobb 500 chicks were reared in 12 environmental chambers with three diets: a corn-soybean-based diet (C) and two herbal adaptogen-supplemented diets at 500 g/1000 kg (NR-PHY-500) and 1 kg/1000 kg (NR-PHY-1000). Broilers in 9 chambers were exposed to chronic cyclic HS (35 °C for 8 h/day) from d29 to d42, while 3 chambers were maintained at 24 °C (thermoneutral, TN) for all 42 days. Hypothalamic samples were collected on d42 from each group, both before the onset of HS (Pre-HS) that day and after 3 h of HS (post-HS). Hypothalamic expressions of neuropeptide Y (NPY) receptors Y4 and Y7, Corticotropin-releasing hormone (CRH), orexin receptor 1 (ORXR1), melanocortin receptors (MC1R, MC4R, and MC5R), visfatin and neurosecretory protein GL (NPGL) genes were significantly upregulated by adaptogen supplementation. The hypothalamic expression of MC2R was affect by period, with a significant upregulation during post-HS phase. There was a significant period by treatment interaction for hypothalamic orexin and adiponectin expression. The hypothalamic expression of NPY, Y1, Y2, Y5, Y6, proopiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), agouti-related peptide (AgRP), ORXR2, AdipR1/2, MC3R, and ghrelin was not affected by diet supplementation nor by HS exposure. In conclusion, these findings suggest that in-feed supplementation of adaptogen might improve FI and growth via modulation of hypothalamic feeding-related neuropeptides in heat-stressed broilers.


Subject(s)
Chickens , Dietary Supplements , Hypothalamus , Neuropeptides , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Neuropeptides/metabolism , Male , Animal Feed , Heat-Shock Response/drug effects , Eating/drug effects
6.
Diabetes Obes Metab ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742467

ABSTRACT

AIM: To investigate if patients with diabetes taking metformin have better outcomes versus those not taking metformin following an emergency room visit for influenza. METHODS: Using electronic medical records, we performed a retrospective chart review of all adult patients with a diagnosis of diabetes seen in any Duke University Medical Center-affiliated emergency department for influenza over a 6-year period. We documented patient characteristics and comorbidities, and compared outcomes for patients taking metformin versus patients not taking metformin using both univariable and multivariable analyses. Our primary outcome was hospital admission rate. Secondary outcomes were in-hospital length of stay and in-hospital death. RESULTS: Our cohort included 1023 adult patients with diabetes, of whom 59.9% were female. The mean age was 62.9 years, 58.4% were African American, 36.1% were White, and 81.9% were obese or overweight. Of these patients, 347 (34%) were taking metformin. Patients with diabetes taking metformin were less likely to be hospitalized following an emergency department visit for influenza than patients with diabetes not taking metformin (56.8% vs. 70.1%; p < 0.001). Of those patients admitted, there was no statistically significant difference in length of stay or death. CONCLUSIONS: In patients with diabetes, metformin use is associated with lower rate of hospitalization following an emergency department visit for influenza.

7.
Front Vet Sci ; 11: 1382535, 2024.
Article in English | MEDLINE | ID: mdl-38605922

ABSTRACT

Powered by consumer taste, value, and preferences, natural products including phytogenics and algae are increasingly and separately used in the food systems where they have been reported to improve growth performance in poultry and livestock. The present study aimed to determine the effects of a new feed additive, microencapsulated NUQO© NEX, which contains a combination of phytogenic and phycogenic, on broiler growth performance, blood chemistry, bone health, meat quality and sensory profile. Male Cobb500 chicks (n = 1,197) were fed a 3-phase feeding intervals; 1-14d starter, 15-28d grower, and 29-40d finisher. The dietary treatments included a corn-soy basal Control (CON), basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 28d then 75 g/ton from d 28 to 40 (NEX75), and basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 40d (NEX100). The NEX100 supplemented birds had 62 g more BWG increase and 2.1-point improvement in FCR compared with CON in the finisher and overall growth phase (p < 0.05), respectively. Day 40 processing body weights and carcass weights were heavier for the NEX100 supplemented birds (p < 0.05). The incidences of muscle myopathies were also higher in NEX treatments, which could be associated with the heavier weights, but the differences were not detected to be significant. The NEX75 breast filets had more yellowness than other dietary treatments (p = 0.003) and the NEX 100 treatment reduced the levels of breast filet TBARS at 7 days-post harvest (p = 0.053). Finally, both NEX treatments reduced the incidence of severe bone (tibia and femur) lesions. In conclusion, the supplementation of the phytogenic NUQO© NEX improved finisher performance parameters, whole phase FCR, processing carcass weights, and breast filet yellowness, at varying inclusion levels.

8.
Physiol Rep ; 12(5): e15972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467563

ABSTRACT

With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.


Subject(s)
Aquaporin 2 , Chickens , Animals , Chickens/genetics , Aquaporin 2/genetics , Aquaporin 2/metabolism , Water/metabolism , Hot Temperature , Heat-Shock Response/genetics , RNA, Messenger/metabolism
9.
Brain Res ; 1830: 148810, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38365130

ABSTRACT

Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.


Subject(s)
Aquaporin 2 , Chickens , Animals , Chickens/metabolism , Aquaporin 2/metabolism , Hot Temperature , Heat-Shock Response , RNA, Untranslated/metabolism , Animal Feed/analysis , Dietary Supplements , Diet/veterinary
10.
Front Physiol ; 14: 1184636, 2023.
Article in English | MEDLINE | ID: mdl-37324386

ABSTRACT

Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates.

11.
Animals (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370553

ABSTRACT

Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and consequently growth, we undertook the present study to evaluate the effects of dietary phytase on growth and meat quality in heat-stressed broilers. A total of 720 day-old hatch Cobb 500 chicks were assigned to 24 pens within controlled environmental chambers and fed three diets: Negative Control (NC), Positive Control (PC), and NC diet supplemented with 2000 phytase units (FTU)/kg) of quantum blue (QB). On day 29, birds were exposed to two environmental conditions: thermoneutral (TN, 25 °C) or cyclic heat stress (HS, 35 °C, 8 h/d from 9 a.m. to 5 p.m.) in a 3 × 2 factorial design. Feed intake (FI), water consumption (WI), body weight (BW), and mortality were recorded. On day 42, birds were processed, carcass parts were weighed, and meat quality was assessed. Breast tissues were collected for determining the expression of target genes by real-time quantitative PCR using the 2-ΔΔCt method. HS significantly increased core body temperature, reduced feed intake and BW, increased water intake (WI), elevated blood parameters (pH, SO2, and iCa), and decreased blood pCO2. HS reduced the incidence of woody breast (WB) and white striping (WS), significantly decreased drip loss, and increased both 4- and 24-h postmortem pH. Instrumental L* and b* values were reduced (p < 0.05) by the environmental temperature at both 4- and 24-h postmortem. QB supplementation reduced birds' core body temperature induced by HS and improved the FCR and water conversion ratio (WCR) by 1- and 0.5-point, respectively, compared to PC under HS. QB increased blood SO2 and reduced the severity of WB and WS under TN conditions, but it increased it under an HS environment. The abovementioned effects were probably mediated through the modulation of monocarboxylate transporter 1, heat shock protein 70, mitogen-activated protein kinase, and/or glutathione peroxidase 1 gene expression, however, further mechanistic studies are warranted. In summary, QB supplementation improved growth performance and reduced muscle myopathy incidence under TN conditions. Under HS conditions, however, QB improved growth performance but increased the incidence of muscle myopathies. Therefore, further QB titration studies are needed.

12.
Metabolites ; 13(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233703

ABSTRACT

Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3ß-hydroxysteroid dehydrogenase (3ß HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.

13.
Sci Rep ; 13(1): 5947, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045932

ABSTRACT

Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.


Subject(s)
Bacterial Infections , Osteomyelitis , Poultry Diseases , Animals , Necrosis/pathology , Tibia/pathology , Chickens , Lameness, Animal/etiology , Proteomics , Poultry Diseases/microbiology , Housing, Animal , Osteomyelitis/microbiology , Bacteria , Bacterial Infections/microbiology
15.
Life Sci Space Res (Amst) ; 37: 39-49, 2023 May.
Article in English | MEDLINE | ID: mdl-37087178

ABSTRACT

BACKGROUND: The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS: For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS: Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS: The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.


Subject(s)
Heavy Ions , Mice , Animals , Female , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/metabolism , Collagen/metabolism , Collagen/pharmacology , Hindlimb Suspension/adverse effects , Hindlimb Suspension/physiology
16.
Commun Biol ; 6(1): 220, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828843

ABSTRACT

Successful organ or tissue long-term preservation would revolutionize biomedicine. Cartilage cryopreservation enables prolonged shelf life of articular cartilage, posing the prospect to broaden the implementation of promising osteochondral allograft (OCA) transplantation for cartilage repair. However, cryopreserved large sized cartilage cannot be successfully warmed with the conventional convection warming approach due to its limited warming rate, blocking its clinical potential. Here, we develope a nanowarming and ice-free cryopreservation method for large sized, intact articular cartilage preservation. Our method achieves a heating rate of 76.8 °C min-1, over one order of magnitude higher than convection warming (4.8 °C min-1). Using systematic cell and tissue level tests, we demonstrate the superior performance of our method in preserving large cartilage. A depth-dependent preservation manner is also observed and recapitulated through magnetic resonance imaging and computational modeling. Finally, we show that the delivery of nanoparticles to the OCA bone side could be a feasible direction for further optimization of our method. This study pioneers the application of nanowarming and ice-free cryopreservation for large articular cartilage and provides valuable insights for future technique development, paving the way for clinical applications of cryopreserved cartilage.


Subject(s)
Cartilage, Articular , Swine , Animals , Cryopreservation/methods , Tissue Preservation , Magnetic Resonance Imaging
17.
Am J Physiol Cell Physiol ; 324(3): C679-C693, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717103

ABSTRACT

Although broiler (meat-type) chickens are one of the most efficient protein sources that supports the livelihoods and food security of billions of people worldwide, they are facing several challenges. Due to its unknown etiology and heavy economic impact, woody breast (WB) myopathy is one of the most challenging problems facing the poultry industry, and for which there is no effective solution. Here, using a primary chicken myotube culture model, we show that hypoxia and endoplasmic reticulum (ER) stress are an integral component of the etiology of the myopathy. Multiple components of the ER stress response are significantly upregulated in WB as compared with normal muscle, and this response was mimicked by hypoxic conditions in chicken primary myotube culture. In addition, apoptotic pathways were activated as indicated by increases in active caspase 3 protein levels in both WB-affected tissues and hypoxic myotube culture, and caspase 3 activity and apoptosis in hypoxic myotube culture. Finally, as a phenotypic hallmark of WB is enhanced fibrosis and increased collagen aggregation, here, we show that hypoxic conditions increase collagen 1A1 and 1A2 gene expression, as well as collagen 1 protein levels in primary myotubes. These effects were partially reversed by tauroursodeoxycholic acid (TUDCA), an ER-stress inhibitor, in myotube culture. Taken together, these findings indicate that hypoxia and ER stress are present in WB, hypoxia can upregulate the cell death arm of the unfolded protein response (UPR) and lead to collagen production in a culture model of WB. This opens new vistas for potential mechanistic targets for future effective interventions to mitigate this myopathy.


Subject(s)
Chickens , Muscular Diseases , Animals , Caspase 3/genetics , Caspase 3/metabolism , Chickens/metabolism , Endoplasmic Reticulum Stress , Muscular Diseases/genetics , Muscle Fibers, Skeletal/metabolism , Hypoxia
18.
Poult Sci ; 102(1): 102254, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370660

ABSTRACT

Lameness is a leading cause of animal welfare and production concerns for the poultry industry as fast-growing, high-yielding broilers seem more susceptible to bone disease and infections. A major limitation to the study of these disorders is the lack of a chicken immortalized chondrocyte cell. Primary cell isolation is a valid and complex method for establishing a relevant in vitro model for diseases. In this study, isolation and high-density culturing of primary chondrocytes form 1-d old chicks was followed by confirmation of cell type, identification of optimal phenotypic expression, and evaluation of cells functionality. mRNA expression, as well as protein production and secretion, of COLI, COLII, Sox9, ACAN, and COLXA1 on day 3 (d3), d7, d11, d14, d18, and d21 in culture showed that avian growth plate chondrocytes under these conditions exhibit optimal phenotypes from d3 to d7. This is evident by a shift from COLII dominant expression in early-culture to COLI dominant expression by late-culture in conjunction with a loss of other chondrocyte markers Sox9, ACAN, and COLXA1. Additionally, morphological changes seen through live cell imaging coincide with the shift of phenotype in mid- to late-culture periods indicating a dedifferentiated phenotype. The functionality of the cultured cells was confirmed using Brefeldin-A treatment which significantly reduced secretion of COLII by d7 chondrocytes. These results provide a foundation for future research utilizing avian primary chondrocytes with optimal phenotypes for disease modeling or passaging.


Subject(s)
Chondrocytes , Growth Plate , Animals , Chickens , Cell Differentiation/genetics , Cells, Cultured
19.
Psychodyn Psychiatry ; 50(4): 569-572, 2022.
Article in English | MEDLINE | ID: mdl-36476030

ABSTRACT

This personal narrative reflects on the writer's formation of a military identity. It discusses the author's experience with the effects of military culture on both personal and group identity and the challenges of leaving the military.

20.
Nurse Educ Pract ; 64: 103453, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36201913

ABSTRACT

AIM: The purpose of this study was to examine midwifery students' views and experiences of learning perineal suturing skills through a blended learning approach. BACKGROUND: Evidence suggests that not all midwifery students are gaining sufficient experience in perineal trauma and suturing to sufficiently prepare them to achieve competency in this skill at the point of registration. DESIGN: The blended learning approach included lectures, a bespoke 'suture at home kit', online reusable learning objects, and an optional face-to-face drop-in suture clinic. Midwifery students submitted a video demonstration of the skills acquired and then attended a clinical skills laboratory in preparation for a face-to-face competency assessment on campus. RESULTS: A qualitative descriptive evaluation research design study was undertaken from 22 participants. Deductive thematic analysis was selected to analyse the qualitative data. Two themes were identified. The first theme, 'learning at home', included sub-themes of 'deliberate practice' and 'the ability to make mistakes. The second theme, 'achieving competency', included sub-themes of 'equipment' and 'bringing it all together' CONCLUSIONS: The blended learning approach of the programme applied to teach perineal suturing had a positive influence on midwifery students learning of the skill. The acquisition of knowledge using the suture at home kit gave the students confidence and prepared them for laboratory practice and assessment, and ultimately prepared them for practice placement. They identified other clinical skills suited to using an 'at home' simulation pack. The validation of the perineal suturing programme by midwifery students supports the need for a blended learning approach for this and other clinical skills. All participants expressed a positive view of the programme and found it beneficial for their learning. Midwifery students recognised that the suture at home kit gave them confidence, knowledge of the skill and preparedness for the clinical skills laboratory practice and assessment. They identified other clinical skills suited to using an 'at home' simulation pack. The positive experiences of midwifery students in this study to a blended-learning programme for perineal suturing education and training further validated the recognised need to develop and include online, and face to face learning approaches for this vital aspect of intrapartum care.


Subject(s)
Midwifery , Students, Nursing , Clinical Competence , Female , Humans , Learning , Midwifery/education , Pregnancy , Sutures
SELECTION OF CITATIONS
SEARCH DETAIL
...