Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Stroke ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129597

ABSTRACT

BACKGROUND: TGF (transforming growth factor)-ß pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFß receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive. METHODS: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology. RESULTS: Herein, we establish that the TGFß/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFß-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFß-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival. CONCLUSIONS: This study demonstrates that TGFß-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.

2.
Front Cell Dev Biol ; 12: 1335061, 2024.
Article in English | MEDLINE | ID: mdl-38572485

ABSTRACT

Alveolarization ensures sufficient lung surface area for gas exchange, and during bulk alveolarization in mice (postnatal day [P] 4.5-14.5), alpha-smooth muscle actin (SMA)+ myofibroblasts accumulate, secrete elastin, and lay down alveolar septum. Herein, we delineate the dynamics of the lineage of early postnatal SMA+ myofibroblasts during and after bulk alveolarization and in response to lung injury. SMA+ lung myofibroblasts first appear at ∼ P2.5 and proliferate robustly. Lineage tracing shows that, at P14.5 and over the next few days, the vast majority of SMA+ myofibroblasts downregulate smooth muscle cell markers and undergo apoptosis. Of note, ∼8% of these dedifferentiated cells and another ∼1% of SMA+ myofibroblasts persist to adulthood. Single cell RNA sequencing analysis of the persistent SMA- cells and SMA+ myofibroblasts in the adult lung reveals distinct gene expression profiles. For instance, dedifferentiated SMA- cells exhibit higher levels of tissue remodeling genes. Most interestingly, these dedifferentiated early postnatal myofibroblasts re-express SMA upon exposure of the adult lung to hypoxia or the pro-fibrotic drug bleomycin. However, unlike during alveolarization, these cells that re-express SMA do not proliferate with hypoxia. In sum, dedifferentiated early postnatal myofibroblasts are a previously undescribed cell type in the adult lung and redifferentiate in response to injury.

3.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652543

ABSTRACT

Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia with or without Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor 1α (HIF1-α) and HIF2-α, which induce platelet-derived growth factor B (PDGF-B), and these factors were reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα overexpression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1-α, HIF2-α, PDGF-B, and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion, or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia with or without Sugen 5416. Thus, chronic hypoxia induction of the HIFα/PDGF-B axis in ECs is required for non-cell-autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.


Subject(s)
Beclin-1 , Endothelial Cells , Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Smooth Muscle , Proto-Oncogene Proteins c-sis , Signal Transduction , Animals , Beclin-1/metabolism , Beclin-1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Proto-Oncogene Proteins c-sis/metabolism , Proto-Oncogene Proteins c-sis/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Endothelial Cells/metabolism , Male , Vascular Remodeling , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Hypoxia/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Autophagy , Disease Models, Animal , Arterioles/metabolism , Arterioles/pathology , Indoles , Pyrroles
4.
Nat Commun ; 15(1): 1247, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341404

ABSTRACT

Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.


Subject(s)
Liver Diseases , Liver Regeneration , Animals , Liver Regeneration/physiology , Liver/metabolism , Hepatocytes/metabolism , Liver Diseases/metabolism , Disease Models, Animal , Cell Proliferation
5.
iScience ; 27(1): 108636, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38226162

ABSTRACT

Smooth muscle cell (SMC) accumulation is central to the pathogenesis of elastin-defective arterial diseases, including supravalvular aortic stenosis (SVAS). We previously demonstrated that elastin insufficiency activates Notch signaling in aortic SMCs. Activation of Notch is catalyzed by the enzyme gamma-secretase, but the role of catalytic subunits presenilin (PSEN)-1 or PSEN-2 in elastin aortopathy is not defined. Genetic approaches reveal that endothelial cell-specific Psen1 deletion does not improve elastin aortopathy whereas the deletion of either Psen1 in SMCs or Psen2 globally attenuates Notch pathway and SMC proliferation, mitigating aortic disease. With SMC-specific Psen1 deletion in elastin nulls, these rescue effects are more robust and in fact, survival is increased. SMC deletion of Psen1 also attenuates hypermuscularization in newborns heterozygous for the elastin null gene, which genetically mimics SVAS. Similarly, the pharmacological inhibition of PSEN-1 mitigates SMC accumulation in elastin aortopathy. These findings put forth SMC PSEN-1 as a potential therapeutic target in SVAS.

6.
Nat Aging ; 3(1): 64-81, 2023 01.
Article in English | MEDLINE | ID: mdl-36743663

ABSTRACT

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Aged , Plaque, Atherosclerotic/metabolism , Bone Marrow/metabolism , Integrin beta3/metabolism , Atherosclerosis/genetics , Myocytes, Smooth Muscle , Muscle, Smooth/metabolism
7.
J Heart Lung Transplant ; 42(5): 544-552, 2023 05.
Article in English | MEDLINE | ID: mdl-36604291

ABSTRACT

Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-ß and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.


Subject(s)
Hypertension, Pulmonary , Humans , Vascular Endothelial Growth Factor A/metabolism , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Signal Transduction , Pulmonary Artery , Vascular Remodeling , Cell Proliferation , Myocytes, Smooth Muscle
8.
Circulation ; 145(23): 1720-1737, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35502657

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS: We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS: P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS: This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cardiovascular Diseases/metabolism , Chromatin Assembly and Disassembly , Contractile Proteins/metabolism , Epigenesis, Genetic , Histones/metabolism , Humans , Hyperplasia/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism
9.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34990407

ABSTRACT

Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2 important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln-/- mutants. Eln-/- mice expressed higher levels of NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln-/- mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.


Subject(s)
Aortic Stenosis, Supravalvular , Elastin , Jagged-1 Protein/metabolism , Amyloid Precursor Protein Secretases , Animals , Aorta/metabolism , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/metabolism , Aortic Stenosis, Supravalvular/pathology , Constriction, Pathologic , Elastin/genetics , Elastin/metabolism , Endothelial Cells/metabolism , Humans , Mice , Receptor, Notch3/genetics
10.
Nat Commun ; 12(1): 7179, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893592

ABSTRACT

During lung fibrosis, the epithelium induces signaling to underlying mesenchyme to generate excess myofibroblasts and extracellular matrix; herein, we focus on signaling in the mesenchyme. Our studies indicate that platelet-derived growth factor receptor (PDGFR)-ß+ cells are the predominant source of myofibroblasts and Kruppel-like factor (KLF) 4 is upregulated in PDGFR-ß+ cells, inducing TGFß pathway signaling and fibrosis. In fibrotic lung patches, KLF4 is down-regulated, suggesting KLF4 levels decrease as PDGFR-ß+ cells transition into myofibroblasts. In contrast to PDGFR-ß+ cells, KLF4 reduction in α-smooth muscle actin (SMA)+ cells non-cell autonomously exacerbates lung fibrosis by inducing macrophage accumulation and pro-fibrotic effects of PDGFR-ß+ cells via a Forkhead box M1 to C-C chemokine ligand 2-receptor 2 pathway. Taken together, in the context of lung fibrosis, our results indicate that KLF4 plays opposing roles in PDGFR-ß+ cells and SMA+ cells and highlight the importance of further studies of interactions between distinct mesenchymal cell types.


Subject(s)
Kruppel-Like Factor 4/genetics , Kruppel-Like Factor 4/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Myofibroblasts/metabolism , Animals , Cell Proliferation , Disease Models, Animal , Down-Regulation , Extracellular Matrix/metabolism , Female , Fibroblasts/metabolism , Fibrosis , Humans , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Receptor, Platelet-Derived Growth Factor beta/metabolism , Respiratory Tract Diseases/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
11.
JVS Vasc Sci ; 2: 79-94, 2021.
Article in English | MEDLINE | ID: mdl-34617061

ABSTRACT

OBJECTIVE: The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. METHODS: We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. RESULTS: Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and ß3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. CONCLUSIONS: Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.

12.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33591958

ABSTRACT

Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor-B (PDGF-B) induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH, and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA was upregulated in mice, and LysM­Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, hypoxia-inducible factor 2a, or Pdgfb had reduced macrophage Pdgfb and were protected against distal muscularization and PH. Conversely, LysM­Cre von-Hippel Lindaufl/fl mice had increased macrophage Hifa and Pdgfb and developed distal muscularization, PH, and RVH in normoxia. Similarly, Pdgfb was upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increased SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduced lung macrophage Pdgfb and prevented hypoxia-induced distal muscularization, PH, and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.


Subject(s)
Hypertension, Pulmonary/pathology , Macrophages/metabolism , Muscle, Smooth/physiopathology , Proto-Oncogene Proteins c-sis/physiology , Animals , Humans , Hypertension, Pulmonary/metabolism , Mice , Muscle, Smooth/pathology
13.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33393489

ABSTRACT

Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.


Subject(s)
Lung/innervation , Lung/metabolism , Macrophages/metabolism , Netrin-1/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bleomycin/adverse effects , Bleomycin/pharmacology , Female , Lung/pathology , Macrophages/pathology , Male , Mice , Mice, Transgenic , Netrin-1/genetics , Norepinephrine/genetics , Norepinephrine/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology
14.
Nat Aging ; 1(8): 631-633, 2021 08.
Article in English | MEDLINE | ID: mdl-36540165

ABSTRACT

Cellular senescence and smooth muscle cells are key features of the atherosclerotic plaque; however, how senescent cells regulate smooth muscle cells is largely unknown. Herein, a new study in Nature Aging illuminates this interplay, providing insights into plaque dynamics and stability with potentially profound implications for heart attack and stroke.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Cellular Senescence , Cells, Cultured , Myocytes, Smooth Muscle
15.
Arterioscler Thromb Vasc Biol ; 39(4): 603-612, 2019 04.
Article in English | MEDLINE | ID: mdl-30727757

ABSTRACT

Smooth muscle cells (SMCs) are a critical component of blood vessel walls that provide structural support, regulate vascular tone, and allow for vascular remodeling. These cells also exhibit a remarkable plasticity that contributes to vascular growth and repair but also to cardiovascular pathologies, including atherosclerosis, intimal hyperplasia and restenosis, aneurysm, and transplant vasculopathy. Mouse models have been an important tool for the study of SMC functions. The development of smooth muscle-expressing Cre-driver lines has allowed for exciting discoveries, including recent advances revealing the diversity of phenotypes derived from mature SMC transdifferentiation in vivo using inducible CreER T2 lines. We review SMC-targeting Cre lines driven by the Myh11, Tagln, and Acta2 promoters, including important technical considerations associated with these models. Limitations that can complicate study of the vasculature include expression in visceral SMCs leading to confounding phenotypes, and expression in multiple nonsmooth muscle cell types, such as Acta2-Cre expression in myofibroblasts. Notably, the frequently employed Tagln/ SM22α- Cre driver expresses in the embryonic heart but can also confer expression in nonmuscular cells including perivascular adipocytes and their precursors, myeloid cells, and platelets, with important implications for interpretation of cardiovascular phenotypes. With new Cre-driver lines under development and the increasing use of fate mapping methods, we are entering an exciting new era in SMC research.


Subject(s)
Gene Targeting/methods , Muscle, Smooth, Vascular/physiology , Promoter Regions, Genetic , Actins/biosynthesis , Actins/genetics , Animals , Cell Line , Cell Lineage , Cell Transdifferentiation , Gene Expression Regulation , Gene Knockout Techniques , Humans , Mice , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Myocytes, Smooth Muscle/physiology , Myofibroblasts/physiology , Myosin Heavy Chains/biosynthesis , Myosin Heavy Chains/genetics , Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic , Phenotype , Recombinant Fusion Proteins/metabolism
18.
Nat Commun ; 9(1): 3463, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150707

ABSTRACT

Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-ß (PDGFRß). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRß at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRß-Y1009/NCK signaling as a potential target for the treatment of retinopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Diabetic Retinopathy/physiopathology , Ischemia/physiopathology , Neovascularization, Pathologic/physiopathology , Oncogene Proteins/metabolism , Pericytes/cytology , Animals , Cell Movement/physiology , Mice , Proto-Oncogene Proteins c-sis/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Signal Transduction/physiology
19.
Nat Commun ; 9(1): 2073, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802249

ABSTRACT

Smooth muscle cells (SMCs) play a key role in atherogenesis. However, mechanisms regulating expansion and fate of pre-existing SMCs in atherosclerotic plaques remain poorly defined. Here we show that multiple SMC progenitors mix to form the aorta during development. In contrast, during atherogenesis, a single SMC gives rise to the smooth muscle-derived cells that initially coat the cap of atherosclerotic plaques. Subsequently, highly proliferative cap cells invade the plaque core, comprising the majority of plaque cells. Reduction of integrin ß3 (Itgb3) levels in SMCs induces toll-like receptor 4 expression and thereby enhances Cd36 levels and cholesterol-induced transdifferentiation to a macrophage-like phenotype. Global Itgb3 deletion or transplantation of Itgb3(-/-) bone marrow results in recruitment of multiple pre-existing SMCs into plaques. Conditioned medium from Itgb3-silenced macrophages enhances SMC proliferation and migration. Together, our results suggest SMC contribution to atherogenesis is regulated by integrin ß3-mediated pathways in both SMCs and bone marrow-derived cells.


Subject(s)
Atherosclerosis/pathology , Cell Proliferation , Integrin beta3/physiology , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/pathology , Animals , Aorta/cytology , Aorta/pathology , Atherosclerosis/surgery , Bone Marrow Transplantation , Cell Movement , Cell Transdifferentiation , Cells, Cultured , Cholesterol/metabolism , Disease Models, Animal , Female , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/surgery
20.
Cell Rep ; 23(4): 1152-1165, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29694892

ABSTRACT

Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor ß+ (PDGFR-ß+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α (HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.


Subject(s)
Cell Transdifferentiation , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Myoblasts, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Female , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lymphokines/genetics , Lymphokines/metabolism , Male , Mice , Muscle, Smooth, Vascular/pathology , Myoblasts, Smooth Muscle/pathology , Myocytes, Smooth Muscle/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL