Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 20(24): 7462-5, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21036609

ABSTRACT

We discovered that the introduction of a methyl group to the benzylic position of the N-benzyl group in lead compound 1a has a dramatic effect on improving the binding selectivity of this ligand for the prostanoid receptors DP1 (receptor for prostaglandin D(2)) as compared to TP (receptor for thromboxane A(2)). Based on this discovery, we have synthesized a series of potent and highly selective DP1 antagonists. Among them, compound 1h was identified as a highly selective DP1 antagonist with excellent overall properties. It has a K(i) of 0.43 nM to DP1 in binding assay and an IC(50) of 2.5 nM in the DP1 functional assay. Its selectivity for DP1 over TP (the most potent receptor after DP1) exceeds 750-fold based on both binding and functional assays. These properties make 1h a very potent and highly selective DP1 receptor antagonist suitable for investigating the biological functions of DP1 in normal physiology and models of disease.


Subject(s)
Carbazoles/chemistry , Receptors, Prostaglandin/antagonists & inhibitors , Sulfones/chemistry , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Humans , Protein Binding , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacology
3.
Bioorg Med Chem Lett ; 18(8): 2696-700, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18359630

ABSTRACT

A new series of indole-based antagonists of the PGD(2) receptor subtype 1 (DP1 receptor) was identified and the progress of the structure-activity relationship study to the identification of potent and selective antagonists is presented. Selective DP1 antagonists with high potency and selectivity were prepared. Of particular interest is the DP1 antagonist 26 with a K(i) value of 1 nM for the DP1 receptor and an IC(50) value of 4.6 nM in a DP1 functional assay for the inhibition of the PGD(2) induced cAMP production in platelet rich plasma (PRP).


Subject(s)
Hydrogen/chemistry , Indoles/chemical synthesis , Indoles/pharmacology , Pyridines/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Humans , Indoles/chemistry , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
4.
J Med Chem ; 50(4): 794-806, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17300164

ABSTRACT

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.


Subject(s)
Indoles/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Airway Obstruction/drug therapy , Animals , Bile/metabolism , Binding, Competitive , Dogs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Nasal Decongestants/chemical synthesis , Nasal Decongestants/pharmacokinetics , Nasal Decongestants/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Stereoisomerism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 16(21): 5639-42, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16931013

ABSTRACT

Two different series of very potent and selective EP(3) antagonists have been reported: a novel series of ortho-substituted cinnamic acids [Belley, M., Gallant, M., Roy, B., Houde, K., Lachance, N., Labelle, M., Trimble, L., Chauret, N., Li, C., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Greig, G. M., Slipetz, D., Metters, K. M., Gordon, R., Chan, C. C., Zamboni, R. J. Bioorg. Med. Chem. Lett.2005, 15, 527] and the acylsulfonamides of ortho-(arylmethyl)cinnamates. [(a) Juteau, H., Gareau, Y., Labelle, M., Sturino, C. F., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Metters, K. M. Bioorg. Med. Chem. 2001, 9, 1977; (b) Juteau, H., Gareau, Y., Labelle, M., Lamontagne, S., Tremblay, N., Carrière, M.-C., Denis, D., Sawyer, N., Metters, K. M. Bioorg. Med. Chem. Lett.2001, 11, 747] The structural differences between the two series, along with their biological activity in vivo, in vitro, and metabolism, are analyzed. Some of those compounds, including hybrids containing the best structural features of both series, possess K(i) as low as 0.6 nM on the EP(3) receptor.


Subject(s)
Cinnamates/pharmacology , Receptors, Prostaglandin E/antagonists & inhibitors , Sulfonamides/pharmacology , Cinnamates/chemistry , Humans , Sulfonamides/chemistry
6.
Bioorg Med Chem Lett ; 16(11): 3043-8, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16529930

ABSTRACT

A novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.6 and 1.8 nM, respectively. These two antagonists are also potent in a DP functional assay where they inhibit the PGD2 induced cAMP production in platelet rich plasma with IC50 values of 7.9 and 8.6 nM, respectively. The structure-activity relationships of this indole series of DP receptor antagonists will also be discussed.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Indoles/chemical synthesis , Molecular Structure , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Safrole/analogs & derivatives , Safrole/chemistry , Structure-Activity Relationship
7.
Life Sci ; 78(23): 2663-8, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16313925

ABSTRACT

Ibudilast ophthalmic solution exhibited an improved clinical efficacy over cromoglycate in the treatment of allergic conjunctivitis. To further characterize its principal mode of action, the phosphodiesterase (PDE) inhibitory profile of ibudilast has been examined using human recombinant enzymes. Ibudilast, but not the other commonly used anti-allergic ophthalmic solutions including cromoglycate, ketotifen, tranilast and levocabastine, potently inhibits purified human PDE4A, 4B, 4C and 4D with IC50 values at 54, 65, 239 and 166 nM, respectively. Ibudilast effectively blocks lipopolysaccharide (LPS)-induced tumor necrosis factor (TNFalpha, IC50 = 6.2 microM) and N-formyl-Met-Leu-Phe (fMLP)-induced leukotriene (LT) B4 biosynthesis (IC50 = 2.5 microM) in human whole blood, which are 3 and 6-fold more potent than cilomilast, respectively. The attenuated inflammatory and allergic responses from the potent and preferential PDE4 inhibition of ibudilast may have contributed significantly to its beneficial pharmacological responses and distinguishes ibudilast from the other ophthalmic solutions in the treatment of ocular allergy.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Ophthalmic Solutions/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Pyridines/pharmacology , Animals , Cell Line , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dogs , Dose-Response Relationship, Drug , Humans , Leukotriene B4/biosynthesis , Leukotriene B4/blood , Lipopolysaccharides/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Recombinant Proteins , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/biosynthesis
8.
Immunol Lett ; 100(2): 139-45, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16154494

ABSTRACT

The anaphylatoxin C3a is an important immune regulator with a number of distinct functions in both innate and adaptive immunity. Many of these roles have been ascribed to C3a based on studies in mice genetically modified to lack its precursor, C3, or its receptor, C3aR. However, other presumed functions of C3a are based on results obtained with a recently described small molecule ligand of C3aR, SB 290157. Although this compound was originally described as an antagonist and appears to act as such in some systems, it has recently been shown to have effects that cannot be explained by simple antagonism of C3aR. In the current study, SB 290157 is shown to have full agonist activity on C3aR in a variety of cell systems, including a calcium mobilization assay in transfected RBL cells, a beta-lactamase assay in CHO-NFAT-bla-Galpha(16) cells and an enzyme-release assay in differentiated U-937 cells. On the other hand, the compound lacks agonist activity in guinea pig platelets, cells known to express C3aR at very low levels. SB 290157 agonism of C3aR is consistent with recent discrepant data obtained using this molecule. These results caution against attributing novel roles to C3a based on data obtained with SB 290157 and highlight a continuing need for the identification of true small molecule C3aR antagonists.


Subject(s)
Arginine/analogs & derivatives , Benzhydryl Compounds/pharmacology , Calcium/metabolism , Membrane Proteins/agonists , Receptors, Complement/agonists , Animals , Arginine/pharmacology , Binding, Competitive , Blood Platelets/drug effects , Blood Platelets/metabolism , CHO Cells , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Complement C3a , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Rats , Receptors, Complement/antagonists & inhibitors , Receptors, Complement/genetics , Transfection , U937 Cells , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
Mol Pharmacol ; 67(6): 1834-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15755909

ABSTRACT

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor whose function in vivo has been incompletely characterized. One of the reasons is that its current known ligands, prostaglandin D(2) and some of its metabolites, have either poor selectivity for CRTH2 or are metabolically unstable in vivo. In this study, we describe the biological and pharmacological properties of L-888,607, the first synthetic potent and selective CRTH2 agonist. We show that L-888,607 exhibits 1) subnanomolar affinity for the human CRTH2 receptor, 2) high selectivity over all other prostanoid receptors and other receptors tested, 3) agonistic activity on recombinant and endogenously expressed CRTH2 receptor, and 4) relative stability in vivo. L-888,607 thus represents a suitable tool to investigate the in vivo function of CRTH2.


Subject(s)
Acetates/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Receptors, Immunologic/agonists , Receptors, Prostaglandin/agonists , Acetates/chemistry , Acetates/metabolism , Animals , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/physiology , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/physiology , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/metabolism , Humans , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Ligands , Male , Mice , Mice, Inbred ICR , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism
10.
Bioorg Med Chem Lett ; 15(4): 1155-60, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15686932

ABSTRACT

The synthesis and the EP(1) receptor binding affinity of 2,3-diarylthiophene derivatives are described. The evaluation of the structure-activity relationship (SAR) in this series led to the identification of compounds 4, 7, and 12a, which exhibit high affinity for the human EP(1) receptor and a selectivity greater than 100-fold against the EP(2), EP(3), EP(4), DP, FP, and IP receptors and greater than 25-fold versus the TP receptor. These three antagonists present good pharmacokinetics in rats and significant differences in the way they are distributed in the brain.


Subject(s)
Receptors, Prostaglandin E/antagonists & inhibitors , Thiophenes/chemical synthesis , Thiophenes/pharmacokinetics , Animals , Brain/metabolism , Cell Line , Half-Life , Humans , Pharmacokinetics , Rats , Receptors, Prostaglandin E, EP1 Subtype , Structure-Activity Relationship , Thiophenes/pharmacology , Tissue Distribution
11.
Bioorg Med Chem Lett ; 15(3): 527-30, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664806

ABSTRACT

A series of novel ortho-substituted cinnamic acids have been synthesized, and their binding activity and selectivity on the four prostaglandin E(2) receptors evaluated. Many of them are very potent and selective EP(3) antagonists (K(i) 3-10 nM), while compound 9 is a very good and selective EP(2) agonist (K(i) 8 nM). The biological profile of the EP(2) agonist 9 in vivo and the metabolic profile of selected EP(3) antagonists are also reported.


Subject(s)
Cinnamates/chemical synthesis , Cinnamates/pharmacology , Receptors, Prostaglandin E/antagonists & inhibitors , Cell Line , Cinnamates/metabolism , Cyclic AMP/biosynthesis , Humans , Pharmacokinetics , Protein Binding , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP3 Subtype , Structure-Activity Relationship
12.
14.
Bioorg Med Chem Lett ; 13(6): 1129-32, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12643927

ABSTRACT

Analogues of PGE(2) wherein the hydroxycyclopentanone ring has been replaced by a lactam have been prepared and evaluated as ligands for the EP(4) receptor. An optimized compound (19a) shows high potency and agonist efficacy at the EP(4) receptor and is highly selective over the other seven known prostaglandin receptors.


Subject(s)
Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Pyrrolidinones/pharmacology , Receptors, Prostaglandin E/agonists , Tetrazoles/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Dinoprostone/chemical synthesis , Drug Design , Half-Life , Humans , Indicators and Reagents , Pyrrolidinones/chemical synthesis , Receptors, Prostaglandin E, EP4 Subtype , Tetrazoles/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL