Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
J Inorg Biochem ; 148: 93-104, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25773716

ABSTRACT

Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.


Subject(s)
Adenine/chemistry , Coordination Complexes/chemistry , Metals/chemistry , Purines/chemistry , Acids/chemistry , Alkalies/chemistry , Amines/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Structure , Nitrogen/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Potentiometry
2.
Chem Soc Rev ; 38(8): 2465-94, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19623361

ABSTRACT

The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).


Subject(s)
Metals/chemistry , Nucleotides/chemistry , Ribonucleotides/chemistry , Hydrogen-Ion Concentration , Xanthine
3.
Chemistry ; 14(32): 10036-46, 2008.
Article in English | MEDLINE | ID: mdl-18803205

ABSTRACT

5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.


Subject(s)
Antineoplastic Agents/chemistry , Esters/chemistry , Uracil/analogs & derivatives , Crystallography, X-Ray , Drug Stability , Models, Molecular , Thermodynamics , Uracil/chemistry , Water/chemistry
4.
Dalton Trans ; (46): 5521-9, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17117222

ABSTRACT

The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+ [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Those for the monoanion, i.e., the Cu(Arm)(H;XMP)+ complexes, could only be estimated; for these species it is concluded that the metal ion is overwhelmingly bound at N7 and the proton resides at the phosphate group. Similarly, in the Cu(Arm)(XMP)+/- [= Cu(Arm)(X - H.MP.H)+/-] complexes Cu(Arm)2+ is also at N7 but the xanthine residue has lost a proton whereas the phosphate group still carries one, i.e., stacking plays, if at all, only a very minor role, yet, the N7-bound Cu(Arm)2+ appears to form an outer-sphere macrochelate with P(O)2(OH)-, its formation degree being about 60%. All this is different in the Cu(Arm)(XMP - H)- complexes, which are formed by the (XMP - H)(3-) species, that occur at the physiological pH of 7.5 and for which previously evidence has been provided that in a tautomeric equilibrium the xanthine moiety loses a proton either from (N1)H or (N3)H. In Cu(Arm)(XMP - H)- the phosphate group is the primary binding site for Cu(Arm)2+ and the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic-ring systems of Phen or Bpy and the monodeprotonated xanthine residue of (XMP - H)(3-); e.g., the stacked Cu(Phen)(XMP - H) isomer occurs with approximately 76%. Regarding biological systems the most important result is that at physiological pH the xanthine moiety has lost a proton from the (N1)H/(N3)H sites forming (XMP - H)(3-) and that its anionic xanthinate residue is able to undergo aromatic-ring stacking.

5.
Chemistry ; 12(31): 8106-22, 2006 Oct 25.
Article in English | MEDLINE | ID: mdl-16888737

ABSTRACT

The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.


Subject(s)
Chelating Agents/chemistry , Metals/chemistry , Ribonucleotides/chemistry , Acids/chemistry , Alkalies/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Potentiometry , Solubility , Solutions/chemistry , Stereoisomerism , Water/chemistry , Xanthine
6.
Chem Soc Rev ; 34(10): 875-900, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16172677

ABSTRACT

Adenosine 5'-triphosphate (ATP(4-)) and related nucleoside 5'-triphosphates (NTP(4-)) serve as substrates in the form of metal ion complexes in enzymic reactions taking part thus in central metabolic processes. With this in mind, the coordination chemistry of NTPs is critically reviewed and the conditions are defined for studies aiming to describe the properties of monomeric complexes because at higher concentrations (>1 mM) self-stacking may take place. The metal ion (M(2+)) complexes of purine-NTPs are more stable than those of pyrimidine-NTPs; this stability enhancement is attributed, in accord with NMR studies, to macrochelate formation of the phosphate-coordinated M(2+) with N7 of the purine residue and the formation degrees of the resulting isomeric complexes are listed. Furthermore, the formation of mixed-ligand complexes (including also those with buffer molecules), the effect of a reduced solvent polarity on complex stability and structure (giving rise to selectivity), the use of nucleotide analogues as antiviral agents, and the effect of metal ions on group transfer reactions are summarized.


Subject(s)
Crystallization/methods , Dinucleoside Phosphates/chemistry , Metals/chemistry , Nucleosides/chemistry , Solutions/chemistry , Binding Sites , Dinucleoside Phosphates/analysis , Hydrogen-Ion Concentration , Ions/chemistry , Nucleosides/analysis
7.
Inorg Chem ; 44(14): 5104-17, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-15998039

ABSTRACT

The acidity constants of 3-fold protonated 9-[2-(2-phosphonoethoxy)ethyl]adenine, H3(PEEA)+, and of 2-fold protonated (2-phosphonoethoxy)ethane, H2(PEE), and the stability constants of the M(H;PEEA)+, M(PEEA), and M(PEE) complexes with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ have been determined (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO3). It is concluded that in the M(H;PEEA)+ species, the proton is at the phosphonate group and the metal ion at the adenine residue. The application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3))H for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue that does not affect metal-ion binding, proves that the M(PEEA) complexes of Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ as well as the M(PEE) complexes of Co2+, Cu2+, and Zn2+ have larger stabilities than is expected for a sole phosphonate coordination of M2+. For the M2+ complexes without an enhanced stability (e.g., Mg2+ or Mn2+), it is concluded that M2+ binds in a monodentate fashion to the phosphonate group of the two ligands. Combination of all of the results allows the following conclusions: (i) The increased stability of the Co(PEE), Cu(PEE), Zn(PEE), and Co(PEEA) complexes is due to the formation of six-membered chelates involving the ether-oxygen atom of the aliphatic residue (-CH2-O-CH2CH2-PO3(2-)) of the ligands with formation degrees of about 15-30%. (ii) Cd(PEEA) forms a macrochelate with N7 of the adenine residue (formation degree about 30%); Ni(PEEA) has similar properties. (iii) With Zn(PEEA), both mentioned types of chelates are observed, that is, Zn(PEEA)(cl/O) and Zn(PEEA)(cl/N7), with formation degrees of about 13 and 41%, respectively; the remaining 46% is due to the "open" isomer Zn(PEEA)(op) in which the metal ion binds only to the PO3(2-) group. (iv) Most remarkable is Cu(PEEA) because a fourth isomer, Cu(PEEA)(cl/O/N3), is formed that contains a six-membered ring involving the ether oxygen next to the phosphonate group and also a seven-membered ring involving N3 of the adenine residue with a very significant formation degree of about 50%. Hence, PEEA(2-) is a truly ambivalent ligand, its properties being strongly dependent on the kind of metal ion involved. Comparisons with M2+ complexes formed by the dianions of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and related ligands reveal that five-membered chelates involving an ether-oxygen atom are considerably more stable than the corresponding six-membered ones. This observation offers an explanation of why PMEA is a nucleotide analogue with excellent antiviral properties and PEEA is not.


Subject(s)
Adenine/analogs & derivatives , Metals/chemistry , Organometallic Compounds/chemistry , Adenine/chemistry , Adenine/metabolism , Antiviral Agents/chemistry , Binding Sites , Cations , Chelating Agents/chemistry , Hydrogen-Ion Concentration , Isomerism , Kinetics , Ligands , Metals/metabolism , Organophosphonates/chemistry , Protons
8.
Chemistry ; 10(20): 5129-37, 2004 Oct 11.
Article in English | MEDLINE | ID: mdl-15372679

ABSTRACT

The first acidity constant of fully protonated xanthosine 5'-monophosphate, that is, of H3(XMP)+, was estimated by means of a micro acidity constant scheme and the following three deprotonations of the H2(XMP)+/- (pKa=0.97), H(XMP)- (5.30), and XMP2- (6.45) species were determined by potentiometric pH titrations; further deprotonation of (XMP-H)3- is possible only with pKa>12. The most important results are that the xanthine residue is deprotonated before the P(O)2(OH)- group loses its final proton; that is, twofold negatively charged XMP carries one negative charge in the pyrimidine ring and one at the phosphate group. Micro acidity constant evaluations reveal that this latter mentioned species occurs with a formation degree of 88 %, whereas its tautomer with a neutral xanthine moiety and a PO3(2-) group is formed only to 12 %; this distinguishes XMP from its related nucleoside 5'-monophosphates, like guanosine 5'-monophosphate. At the physiological pH of about 7.5 mainly (XMP-H)3- exists. The question, which of the purine sites, (N1)H or (N3)H, is deprotonated in this species cannot be answered unequivocally, though it appears that the (N3)H site is more acidic. By application of several methylated xanthine species intrinsic micro acidity constants are calculated and it is shown that, for example, for 7-methylxanthine the N1-deprotonated tautomer occurs with a formation degree of about 5 %; a small but significant amount that, as is discussed, may possibly be enhanced by metal ion coordination to N7, which is known to occur preferably to this site.


Subject(s)
Acids/chemistry , Alkalies/chemistry , Hydrogen/chemistry , Nitrogen/chemistry , Protons , Ribonucleotides/chemistry , Hydrogen-Ion Concentration , Isomerism , Molecular Structure , Solutions/chemistry , Xanthine/chemistry
9.
Inorg Chem ; 43(4): 1311-22, 2004 Feb 23.
Article in English | MEDLINE | ID: mdl-14966966

ABSTRACT

The acidity constants of the 2-fold protonated (1H-benzimidazol-2-yl-methyl)phosphonate, H2(Bimp)(+/-), are given, and the stability constants of the M(H;Bimp)+ and M(Bimp) complexes with the metal ions M2+ = Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Cu2+, Zn2+, or Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log KM(M(Bi-R)) versus pKH(H(Bi-R)) for benzimidazole-type ligands, Bi-R, where R represents a residue which does not affect metal ion binding, proves that the primary binding site in the M(H;Bimp)+ complexes is (mostly) N3 and that the proton is located at the phosphonate group; outersphere interactions seem to be important, and the degree of chelate formation is above 60% for all metal ion complexes studied, except for Zn(H;Bimp)+. A similar evaluation based on log KM(M(R-PO3)) versus pKH(H(R-PO3)) straight-line plots for simple phosph(on)ate ligands, R-, where R represents a residue which cannot participate in the coordination process, reveals that the primary binding site in the M(Bimp) complexes is (mostly) the phosphonate group with all metal ions studied. In this case, the formation degree of the chelates varies more widely in dependence on the kind of metal ion involved, i.e., from 17 +/- 11% to nearly 100% for Ba(Bimp) and Cu(Bimp), respectively. For all the M(H;Bimp)+ and M(Bimp) systems, the intramolecular equilibria between the isomeric complexes are evaluated in a quantitative manner. The fact that for Bimp2- the metal ion affinity of the two binding sites, N3 and PO3(2-), can be calculated independently, i.e., the corresponding micro stability constants become known, allows us to present for the first time a method for the quantification of the chelate effect solely based on comparisons of stability constants which carry the same dimensions. This effect is often ill defined in textbooks because equilibrium constants of different dimensions are compared, which is avoided in the present case. For the M(Bimp) complexes, it is shown that the chelate effect is close to zero for Ba(Bimp) whereas for Cu(Bimp) it amounts to about four log units. This method is also applicable to other chelating systems. Finally, considering that benzimidazole as well as phosphonate derivatives are employed as therapeutic agents, the potential biological properties of Bimp, especially regarding nucleic acid polymerases, are briefly discussed.

10.
Org Biomol Chem ; 1(10): 1819-26, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12926375

ABSTRACT

The synthesis of (1H-benzimidazol-2-yl-methyl)phosphonic acid, H2(Bimp)+/-, is described: 2-chloromethylbenzimidazole was reacted with ethylchloroformate to give 1-carboethoxy-2-chloromethylbenzimidazole which was treated with trimethyl phosphite and after hydrolysis with aqueous HBr H2(Bimp)+/- was obtained. In H2(Bimp)+/- one proton is at the N-3 site and the other at the phosphonate group; both acidity constants were determined in aqueous solution by potentiometric pH titrations (25 degrees C; I = 0.1 M, NaNO3) and this furnished the pKa values of 5.37 +/- 0.02 and 7.41 +/- 0.02, respectively. The acidity constant for the release of the primary proton from the P(O)(OH)2 group of H3(Bimp)+ was estimated: pKa = 1.5 +/- 0.2. Moreover, Bimp2- can be further deprotonated at its neutral (N-1/N-3)H site to give the benzimidazolate residue, but this reaction occurs only in strongly alkaline solution (KOH); application of the H_ scale developed by G. Yagil (J. Phys. Chem., 1967, 71, 1034) together with UV spectrophotometric measurements gave pKa = 14.65 +/- 0.12. Comparisons with acidity constants taken from the literature show that this latter pKa value is far too large and this allows the conclusion that an intramolecular hydrogen bond is formed between the (N-1/N-3)H site and the phosphonate group of Bimp2-; the formation degree of this hydrogen-bonded isomer is estimated to be 98 +/- 2%. The general relevance of this and the other results are shortly discussed and the species distribution for the Bimp system in dependence on pH is provided.

11.
Inorg Chem ; 42(1): 32-41, 2003 Jan 13.
Article in English | MEDLINE | ID: mdl-12513075

ABSTRACT

The effect of Pt(2+) coordination, in particular of (dien)Pt(2+) or cis-(NH(3))(2)Pt(2+), on the acid-base properties of the purine ligands 9-ethylguanine (9EtG), 9-methylhypoxanthine (9MeHx), inosine (Ino), 9-methyladenine (9MeA), and N6',N6',N9-trimethyladenine (TriMeA) is quantitatively evaluated. The corresponding acidity constants of the complexes are calculated by curve-fitting procedures using previously published (1)H NMR shift data which had been measured in aqueous solution (D(2)O) in dependence on pH (pD). Comparison of the pK(a) values of the ligands with those of the Pt(2+) complexes reveals the expected behavior for the (N7)-platinated complexes; i.e., the (N1)H(0/+) sites are acidified due to charge repulsion. However, Pt(2+) coordination at (N1)(-)(/0) sites leads to an (already previously observed) apparent increase in the basicity of the N7 sites for the guanine, hypoxanthine, and adenine residues; this is also the case if Pt(2+) is bound to N3. Coordination of Pt(2+) to both the (N1)(-) and N7 sites of 9EtG results apparently in an enhanced basicity of N3 if compared with the release of the proton from the (N3)H(+) site in H(2)(9EtG)(2+). For the former cases in aqueous solution (H(2)O) it is now proven for a comprehensive set of data (seven examples), by taking into account the intrinsic basicities of the various N7 sites via micro acidity constants, that the acidifications are reciprocal and identical. This means Pt(2+) coordinated to (N1)(-)(/0) sites in guanine, hypoxanthine, or adenine residues acidifies the (N7)H(+) unit to the same extent as (N7)-coordinated Pt(2+) acidifies the (N1)H(0/+) site. In other words, the apparently increased basicity of N7 upon Pt(2+) coordination at (N1)(-)(/0) sites disappears if the micro acidity constants of the appropriate isocharged tautomers of the ligand are properly taken into account. It is further proven, on the basis of the evaluations of the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), that these given conclusions are also valid for nucleotides. In addition, it is shown that the mentioned apparent basicity increase, which results from the use of macro acidity constants, has its origin in the fact that the proton-metal ion (Pt(2+)) interaction (the extent of which depends on the kind of metal ion involved) is less pronounced than the proton-proton interaction. Finally, the proven reciprocal behavior will now allow one to determine micro acidity constants of ligands by studying complexes formed with kinetically inert metal ions. A further result of interest is the proof that the competition of Pt(2+) (or Pd(2+)) with the proton for the (N1)(-) and N7 binding sites of inosinate results in the isomer where the metal ion is at N7 with the proton relegated to (N1)(-); this isomer is favored by a factor of about 2000 compared with the one having the metal ion at (N1)(-) and the proton at N7.

SELECTION OF CITATIONS
SEARCH DETAIL