Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 21(5): 411-427, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36669126

ABSTRACT

The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS: Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Ubiquitin Thiolesterase/genetics , Amino Acids , Arginine/metabolism , Mesothelioma/drug therapy , Mesothelioma/genetics , Cell Line, Tumor , Tumor Suppressor Proteins/genetics
2.
Metabolites ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888774

ABSTRACT

Neutrophils play a key role in the pathophysiology of rheumatoid arthritis (RA) where release of ROS and proteases directly causes damage to joints and tissues. Neutrophil function can be modulated by Janus Kinase (JAK) inhibitor drugs, including tofacitinib and baricitinib, which are clinically effective treatments for RA. However, clinical trials have reported increased infection rates and transient neutropenia during therapy. The subtle differences in the mode of action, efficacy and safety of JAK inhibitors have been the primary research topic of many clinical trials and systematic reviews, to provide a more precise and targeted treatment to patients. The aim of this study was to determine both the differences in the metabolome of neutrophils from healthy controls and people with RA, and the effect of different JAK inhibitors on the metabolome of healthy and RA neutrophils. Isolated neutrophils from healthy controls (HC) (n = 6) and people with RA (n = 7) were incubated with baricitinib, tofacitinib or a pan-JAK inhibitor (all 200 ng/mL) for 2 h. Metabolites were extracted, and 1H nuclear magnetic resonance (NMR) was applied to study the metabolic changes. Multivariate analyses and machine learning models showed a divergent metabolic pattern in RA neutrophils compared to HC at 0 h (F1 score = 86.7%) driven by energy metabolites (ATP, ADP, GTP and glucose). No difference was observed in the neutrophil metabolome when treated with JAK inhibitors. However, JAK inhibitors significantly inhibited ROS production and baricitinib decreased NET production (p < 0.05). Bacterial killing was not impaired by JAK inhibitors, indicating that the effect of JAK inhibitors on neutrophils can inhibit joint damage in RA without impairing host defence. This study highlights altered energy metabolism in RA neutrophils which may explain the cause of their dysregulation in inflammatory disease.

SELECTION OF CITATIONS
SEARCH DETAIL