Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Sci Rep ; 14(1): 10635, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724575

It is well known that hyperthermia greatly impairs neuromuscular function and dynamic balance. However, whether a greater level of hyperthermia could potentially alter the lower limb simulated muscle activation when crossing an obstacle in female participants remains unknown. Therefore we examined the effect of a systematic increase in oral temperature on lower limb simulated muscle activation when crossing an obstacle in female participants. Eighteen female participants were recruited where they underwent a control trial (Con) and two progressive passive heating trials with Δ 1°C and Δ 2°C increase of oral temperature (Toral) using a 45°C water bath. In each trial, we assessed lower limb simulated muscle activation when crossing an obstacle height of 10%, 20%, and 30% of the participant's leg length and toe-off, toe-above-obstacle and heel-strike events were identified and analyzed. In all events, the lower limb simulated muscle activation were greater in Δ2°C than Δ1°C and Con when both leading and trailing limbs crossed the obstacle height of 20% and 30% leg length (all p < 0.001). However, the lower limb simulated muscle activation were not different between Δ1°C and Con across all obstacle heights (p > 0.05). This study concluded that a greater level of hyperthermia resulted in a greater lower limb simulated muscle activation to ensure safety and stability when females cross an obstacle height of 20% leg length or higher.


Muscle, Skeletal , Humans , Female , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Adult , Young Adult , Hyperthermia/physiopathology , Lower Extremity/physiology
2.
Article En | MEDLINE | ID: mdl-38646812

Post-exercise reduction in blood pressure, termed post-exercise hypotension (PEH), is relevant for both acute and chronic health reasons and potentially for peripheral cardiovascular adaptations. We investigated the interactive effects of exercise intensity and recovery postures (seated, supine, and standing) on PEH. Thirteen normotensive men underwent a VO2max test on a cycle ergometer and 5 exhaustive constant load trials to determine critical power (CP) and the gas exchange threshold (GET). Subsequently, work-matched exercise trials were performed at two discrete exercise intensities (10% > CP and 10% < GET), with one hour of recovery in each of three postures. For both exercise intensities, standing posture resulted in a more substantial PEH (all P < 0.01). For both standing and seated recovery postures, the higher exercise intensity led to larger reductions in systolic, diastolic and mean arterial pressures (all P < 0.01), whereas in the supine recovery posture, the reduction in diastolic and mean arterial pressures was unaffected by prior exercise intensity (both P > 0.05). PEH is more pronounced during recovery from exercise performed above critical power versus below GET. However, the effect of exercise intensity on PEH is largely abolished when recovery is performed in the supine posture.

3.
BMC Sports Sci Med Rehabil ; 15(1): 176, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38129892

BACKGROUND: Gait asymmetry is often accompanied by the bilateral asymmetry of the lower limbs. The transcranial direct current stimulation (tDCS) technique is widely used in different populations and scenarios as a potential tool to improve lower limb postural control. However, whether cerebral cortex bilateral tDCS has an interventional effect on postural control as well as bilateral symmetry when crossing obstacles in healthy female remains unknown. METHODS: Twenty healthy females were recruited in this prospective study. Each participant walked and crossed a height-adjustable obstacle. Two-way repeated ANOVA was used to evaluate the effect of group (tDCS and sham-tDCS) and height (30%, 20%, and 10% leg length) on the spatiotemporal and maximum joint angle parameters for lower limb crossing obstacles. The Bonferroni post-hoc test and paired t-test were used to determine the significance of the interaction effect or main effect. The statistically significant differences were set at p < 0.05. RESULTS: The Swing time (SW) gait asymmetry (GA), Stance time (ST) GA, leading limb hip-knee-ankle maximum joint angles and trailing limb hip-knee maximum joint angles decreased in the tDCS condition compared to the sham-tDCS condition at 30%, 20% leg's length crossing height except for 10% leg's length, whereas there was a significant decrease in SW/ST GA between the tDCS condition and the sham-tDCS condition at 30%, 20%, 10% leg's length crossing height (P < 0.05). CONCLUSION: We conclude that tDCS intervention is effective to reduce bilateral asymmetry in spatio-temporal parameters and enhance dynamic balance in female participants during obstacle crossing when the heights of the obstacles were above 10% of the leg's length. TRIAL REGISTRATION NO: ChiCTR2100053942 (date of registration on December 04, 2021). Prospectively registered in the Chinese Clinical Trial Registry.

4.
Eur J Sport Sci ; 22(6): 808-816, 2022 Jun.
Article En | MEDLINE | ID: mdl-33832386

This study aimed to investigate the effects of the external load of elastic bands attached to the waist and heels to enhance the pre-activation of leg extensor muscles on drop jumps (DJs). Twelve male college athletes volunteered for this study. Eight cameras and two force platforms were used to collect data. Each subject performed DJs with elastic band loads of 0% and 20% body weight (BW) attached to the waist and heels during the airborne and landing phases from 40- and 50-cm drop heights. Repeated measures of two-way analysis of variance were performed with two loads of the elastic bands and two heights of the platform for each dependent biomechanical variable. Jump height, reactive strength index, leg stiffness, hip, knee flexion, and ankle plantarflexion angles at the initial foot contact and ankle dorsiflexion range of motion (ROM) significantly increased with 20% BW loads. The peak ground reaction force of impact, eccentric work, and hip flexion range of motion significantly decreased with 20% BW loads. The use of the elastic bands as accentuated loading during the airborne and landing phases of DJs can induce pre-activation of the joint extensors of the lower extremity to achieve stretch-shortening cycle benefits and performance and reduce the ground impact for the lower extremity. HighlightsAttaching elastic bands to the waist and heels enables the following during drop jumps.The joint extensors of the lower extremities act as a counterbalance to the pull from the elastic bands.The performance of the drop jump was improved.The ground impact was reduced.


Ankle Joint , Heel , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Humans , Knee Joint/physiology , Leg/physiology , Male
5.
Article En | MEDLINE | ID: mdl-34206107

Side-to-side asymmetry of lower extremities may influence the risk of injury associated with drop jump. Moreover, drop heights using relative height across individuals based on respective jumping abilities could better explain lower-extremity loading impact for different genders. The purpose of the current study was to evaluate the sex differences of impact forces and asymmetry during the landing phase of drop-jump tasks using drop heights, set according to participants' maximum jumping height. Ten male and ten female athletes performed drop-jump tasks on two force plates, and ground reaction force data were collected. Both feet needed to land entirely on the dedicated force plates as simultaneously as possible. Ground reaction forces and asymmetry between legs were calculated for jumps from 100%, 130%, and 160% of each participant's maximum jumping height. Females landed with greater asymmetry at time of contact initiation and time of peak impact force and had more asymmetrical peak impact force than males. Greater values and shorter time after ground contact of peak impact force were found when the drop height increased to 160% of maximum jumping ability as compared to 100% and 130%. Females exhibited greater asymmetry than males during drop jumps from relative heights, which may relate to the higher risk of anterior cruciate ligament injury among females. Greater sex disparity was evident in impact force asymmetry than in the magnitude of peak impact force; therefore, it may be a more appropriate field-screening test for risk of anterior cruciate ligament injury.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Injuries/epidemiology , Athletes , Biomechanical Phenomena , Female , Humans , Knee Joint , Leg , Lower Extremity , Male
6.
J Strength Cond Res ; 35(12): 3334-3340, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-32639375

ABSTRACT: Peng, H-T, Zhan, D-W, Song, C-Y, Chen, Z-R, Gu, C-Y, Wang, I-L, and Wang, L-I. Acute effects of squats using elastic bands on postactivation potentiation. J Strength Cond Res 35(12): 3334-3340, 2021-The study aimed to investigate the acute effects of squats using elastic bands at different resistance and recovery time points on postactivation potentiation (PAP). Fifteen male collegiate physical education students volunteered to participate in the study. Subjects were assigned to 6 experimental visits, which consisted of repeated factors that were 2 resistance squats (3 repetition maximum [RM] and 5RM) with elastic bands as intervention and 3 performance tests (countermovement jumps [CMJs], 20-m sprints, and change of direction [COD]). The performance test was measured before the resistance squat (pre-test) and at 15 seconds, 4 minutes, and 8 minutes after the resistance squat (post-tests) on each visit. An AMTI force plate and a set of Optojump sensors were used to obtain ground reaction force data during the CMJs and during the 20-m sprints and COD test, respectively. Repeated-measures two-way analyses of variance were performed for the resistance squats and recovery time points for each dependent variable. The 20-m sprint and COD test times at the 4-minute recovery time point after 3RM and 5RM resistance squatting were shorter than the pre-test values (p < 0.05). The rates of force development at the 4- and 8-minute recovery time points after 5RM resistance squatting were higher than the corresponding pre-test values (p < 0.05). All test performance variables significantly decreased at the 15-second recovery time point (p < 0.05). The use of elastic bands in 3RM and 5RM resistance squatting as a warm-up activity may positively affect PAP to improve sprinting, COD ability, and jump explosiveness at the 4-minute recovery time point.


Athletic Performance , Warm-Up Exercise , Humans , Male , Muscle Strength , Muscle, Skeletal , Physical Education and Training , Posture
7.
J Sports Sci Med ; 19(1): 130-137, 2020 03.
Article En | MEDLINE | ID: mdl-32132836

Different shoes and strike patterns produce different biomechanical characteristics that can affect injury risk. Running shoes are mainly designed as lightweight, minimal, or traditional cushioned types. Previous research on different shoes utilized shoes of not only different mass but also different shoe structures. However, it is unclear whether biomechanical changes during running in different shoe types with differing mass are the result of the structural design or the mass of the shoe. Thus, the purpose of this study was to investigate the effect of shoes of different mass on running gait biomechanics. Twenty male runners participated in this study. The experimental shoe masses used in this study were 175, 255, 335 and 415 g. The peak vertical ground reaction force increased with shoe mass (p < 0.05), but the strike index, ankle plantarflexion at initial contact, peak moment of the ankle during the stance phase, and initial contact angles of the lower extremity joints did not change. During the pre-activation phase, the integrated EMG data showed that the tibialis anterior muscle was the most activated with the 175 g and 415 g shoes (p < 0.05). During the push-off phase, the semitendinosus, lateral gastrocnemius and soleus muscles displayed higher activation with the heavier shoes (p < 0.05). The center of pressure also moves forward; resulting in mid foot striking. The lightest shoes might increase gastrocnemius muscle fatigue during the braking phase. The heaviest shoes could cause semitendinosus and triceps surae muscle fatigue during the push-off phase. Therefore, runners should consider their lower extremity joints, muscle adaptation and cushioning to remain in their preferred movement path.


Foot/physiology , Running/physiology , Shoes , Ankle/physiology , Athletic Injuries/prevention & control , Biomechanical Phenomena/physiology , Electromyography , Equipment Design , Gait Analysis , Humans , Male , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Pressure , Running/injuries , Young Adult
8.
Int J Sports Med ; 40(10): 663-669, 2019 Sep.
Article En | MEDLINE | ID: mdl-31365944

This study aimed to explore the biomechanical differences between single and double peak ground reaction force-time curves during the countermovement jump with respect to kinematics, kinetics, and coordination of the lower extremities. Twenty-five college students were stratified into a single peak curve group and a double peak curve group. Eight infrared cameras and two force platforms were synchronized to collect the data. Independent t-tests were performed with groups for each dependent kinematic, kinetic and time of the joint extensor concentric contraction variable. Repeated one-way analysis of variance measurements were performed for the time of the ankle, knee and hip extensor concentric contraction in each group. The double peak curve was associated with larger jump height, reactive strength index modified, rate of force development, impulse, hip, knee and ankle flexion, extension angular displacement, and hip and knee moments (p<0.05). The double peak curve group revealed a better hip, knee and ankle (proximal to distal) timing of extensor concentric contractions sequence of the lower extremities during the countermovement jump (p<0.05). The double peak curve group exhibited a more effective countermovement jump movement with respect to biomechanics compared to the single peak curve group.


Lower Extremity/physiology , Plyometric Exercise , Adolescent , Ankle , Biomechanical Phenomena , Female , Hip , Humans , Kinetics , Knee , Male , Movement , Range of Motion, Articular , Young Adult
9.
Sports Biomech ; 17(2): 143-156, 2018 Jun.
Article En | MEDLINE | ID: mdl-28632060

The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.


Ankle Joint/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Biomechanical Phenomena/physiology , Gait/physiology , Humans , Risk Factors , Running/injuries , Time and Motion Studies , Young Adult
10.
J Sports Sci Med ; 9(1): 134-9, 2010.
Article En | MEDLINE | ID: mdl-24149397

This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

...