Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(26): 17339-17348, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905021

ABSTRACT

In recent years, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely recognized as an ideal platform for surface-enhanced Raman scattering (SERS). Given their rich structural phases, phase transformation in 2D TMDCs is an efficient strategy to tailor their SERS performance. In this paper, we present the great SERS performance of multilayer 2M-WS2 and then investigate the effect of its phase transformation on SERS performance. It is observed that multilayer 2M-WS2 nanosheets undergo a thermally induced single-crystal phase transition from 2M-WS2 to 2H-WS2 upon thermal annealing or laser treatment. Distinguishing from the commercially available pure 2H-WS2 (P-2H-WS2), 2H-WS2 obtained by annealing and laser treatment still retain SERS properties comparable to those of 2M-WS2, among which the detection limits for CV molecules (10-8 M) are 3 orders of magnitude lower than that of P-2H-WS2 and the Raman intensity enhancements are ∼10-37 times higher. In contrast to the charge transfer (CT) mechanism governed by the Fermi level in metallic-phase 2M-WS2, 2H-WS2 obtained by phase transition exhibits accelerated CT facilitated by the bandgap reduction and reorganization resulting from the abundance of vacancies. This study introduces an interesting perspective and potential avenue for enhancing SERS through metal-to-semiconductor phase transitions in 2D TMDCs materials.

2.
Small ; 19(45): e2303654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415518

ABSTRACT

Laser-driven phase transition of 2D transition metal dichalcogenides has attracted much attention due to its high flexibility and rapidity. However, there are some limitations during the laser irradiation process, especially the unsatisfied surface ablation, the inability of nanoscale phase patterning, and the unexploited physical properties of new phase. In this work, the well-controlled femtosecond (fs) laser-driven transformation from the metallic 2M-WS2 to the semiconducting 2H-WS2 is reported, which is confirmed to be a single-crystal to single-crystal transition without layer thinning or obvious ablation. Moreover, a highly ordered 2H/2M nano-periodic phase transition with a resolution of ≈435 nm is achieved, breaking through the existing size bottleneck of laser-driven phase transition, which is attributed to the selective deposition of plasmon energy induced by fs laser. It is also demonstrated that the achieved 2H-WS2 after laser irradiation contains rich sulfur vacancies, which exhibits highly competitive ammonia gas sensing performance, with a detection limit below 0.1 ppm and a fast response/recovery time of 43/67 s at room temperature. This study provides a new strategy for the preparation of the phase-selective transition homojunction and high-performance applications in electronics.

3.
Materials (Basel) ; 16(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676475

ABSTRACT

Laser irradiation, as a kind of post-fabrication method for two-dimensional (2D) materials, is a promising way to tune the properties of materials and the performance of corresponding nano-devices. As the memristor has been regarded as an excellent candidate for in-memory devices in next-generation computing system, the application of laser irradiation in developing excellent memristor based on 2D materials should be explored deeply. Here, tellurene (Te) flakes are exposed to a 532 nm laser in the air atmosphere to investigate the evolutions of the surface morphology and atom structures under different irradiation parameters. Laser is capable of thinning the flakes, inducing amorphous structures, oxides and defects, and forming nanostructures by controlling the irradiation power and time. Furthermore, the laser-induced oxides and defects promote the migration of metal ions in Te, resulting in the formation of the conductive filaments, which provides the switching behavers of volatile memristor, opening a route to the development of next-generation nano-devices.

4.
Nanomaterials (Basel) ; 12(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35269362

ABSTRACT

Strain engineering is a promising and fascinating approach to tailoring the electrical and optical properties of 2D materials, which is of great importance for fabricating excellent nano-devices. Although previous theoretical works have proved that the monolayer tellurene has desirable mechanical properties with the capability of withstanding large deformation and the tunable band gap and mobility conductance induced by in-plane strain, the effects of in-plane and out-of-plane strains on the properties of few-layer tellurene in different phases should be explored deeply. In this paper, calculations based on first-principles density functional theory were performed to predict the variation in crystal structures and electronic properties of few-layer tellurene, including the α and ß phases. The analyses of mechanical properties show that few-layer α-Te can be more easily deformed in the armchair direction than ß-Te owing to its lower Young's modulus and Poisson's ratio. The α-Te can be converted to ß-Te by in-plane compressive strain. The variations in band structures indicate that the uniaxial strain can tune the band structures and even induce the semiconductor-to-metal transition in both few-layer α-Te and ß-Te. Moreover, the compressive strain in the zigzag direction is the most feasible scheme due to the lower transition strain. In addition, few-layer ß-Te is more easily converted to metal especially for the thicker flakes considering its smaller band gap. Hence, the strain-induced tunable electronic properties and semiconductor-to-metal transition of tellurene provide a theoretical foundation for fabricating metal-semiconductor junctions and corresponding nano-devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...