Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters










Publication year range
1.
Nature ; 631(8020): 409-414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961288

ABSTRACT

Bedaquiline (BDQ), a first-in-class diarylquinoline anti-tuberculosis drug, and its analogue, TBAJ-587, prevent the growth and proliferation of Mycobacterium tuberculosis by inhibiting ATP synthase1,2. However, BDQ also inhibits human ATP synthase3. At present, how these compounds interact with either M. tuberculosis ATP synthase or human ATP synthase is unclear. Here we present cryogenic electron microscopy structures of M. tuberculosis ATP synthase with and without BDQ and TBAJ-587 bound, and human ATP synthase bound to BDQ. The two inhibitors interact with subunit a and the c-ring at the leading site, c-only sites and lagging site in M. tuberculosis ATP synthase, showing that BDQ and TBAJ-587 have similar modes of action. The quinolinyl and dimethylamino units of the compounds make extensive contacts with the protein. The structure of human ATP synthase in complex with BDQ reveals that the BDQ-binding site is similar to that observed for the leading site in M. tuberculosis ATP synthase, and that the quinolinyl unit also interacts extensively with the human enzyme. This study will improve researchers' understanding of the similarities and differences between human ATP synthase and M. tuberculosis ATP synthase in terms of the mode of BDQ binding, and will allow the rational design of novel diarylquinolines as anti-tuberculosis drugs.


Subject(s)
Antitubercular Agents , Diarylquinolines , Imidazoles , Mitochondrial Proton-Translocating ATPases , Mycobacterium tuberculosis , Piperidines , Pyridines , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Binding Sites , Cryoelectron Microscopy , Diarylquinolines/chemistry , Diarylquinolines/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/ultrastructure , Models, Molecular , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Piperidines/chemistry , Piperidines/pharmacology , Protein Subunits/metabolism , Protein Subunits/chemistry , Protein Subunits/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology
2.
J Med Chem ; 67(9): 7158-7175, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38651522

ABSTRACT

Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by Plasmodium falciparum and Plasmodium vivax, Trypanosoma brucei, Mycobacterium tuberculosis, and Helicobacter pylori. Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have Ki values ranging from 3 nM to >10 µM, depending on the structure of the inhibitor and the biological origin of the enzyme. X-ray crystal structures show that, on binding, these prolinol-containing inhibitors stimulated the movement of active site loops in the enzyme. Against TBr in cell culture, a prodrug exhibited an EC50 of 10 µM. Thus, these compounds are excellent candidates for further development as drug leads against infectious diseases as well as being potential anticancer agents.


Subject(s)
Drug Design , Enzyme Inhibitors , Pentosyltransferases , Pentosyltransferases/antagonists & inhibitors , Pentosyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Crystallography, X-Ray , Humans , Models, Molecular , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Molecular Structure , Catalytic Domain
3.
Sci Adv ; 10(12): eadk8521, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507491

ABSTRACT

The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Cryoelectron Microscopy , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism
4.
Nat Struct Mol Biol ; 31(7): 1072-1082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548954

ABSTRACT

Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Iron-Sulfur Proteins , Models, Molecular , Mycobacterium tuberculosis , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/enzymology , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Protein Domains , Adenosine Triphosphate/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Protein Conformation
5.
ACS Omega ; 9(7): 8362-8373, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405517

ABSTRACT

Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.

6.
Chem Biol Drug Des ; 103(1): e14364, 2024 01.
Article in English | MEDLINE | ID: mdl-37806947

ABSTRACT

With the emergence of the human pathogen Candida auris as a threat to human health, there is a strong demand to identify effective medicines to prevent the harm caused by such drug-tolerant human fungi. Herein, a series of 33 new derivatives of bensulfuron methyl (BSM) were synthesized and characterized by 1 H NMR, 13 C NMR, and HRMS. Among the target compounds, 8a possessed the best Ki value of 1.015 µM against C. auris acetohydroxyacid synthase (CauAHAS) and an MIC value of 6.25 µM against CBS10913, a clinically isolated strain of C. auris. Taken together the structures of BSM and the synthesized compounds, it was found that methoxy groups at both meta-position of pyrimidine ring are likely to provide desirable antifungal activities. Quantum calculations and molecular dockings were performed to understand the structure-activity relationships. The present study has hence provided some interesting clues for the discovery of novel antibiotics with this distinct mode of action.


Subject(s)
Candida auris , Candida , Sulfonylurea Compounds , Humans , Antifungal Agents/pharmacology , Structure-Activity Relationship , Microbial Sensitivity Tests
7.
Structure ; 31(10): 1158-1165.e3, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37619560

ABSTRACT

The human pathogen, Mycobacterium tuberculosis (Mtb) relies heavily on trehalose for both survival and pathogenicity. The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the only trehalose import pathway in Mtb. Conformational dynamics of ABC transporters is an important feature to explain how they operate, but experimental structures are determined in a static environment. Therefore, a detailed transport mechanism cannot be elucidated because there is a lack of intermediate structures. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine the structure of the Mycobacterium smegmatis (M. smegmatis) trehalose-specific importer LpqY-SugABC complex in five different conformations. These structures have been classified and reconstructed from a single cryo-EM dataset. This study allows a comprehensive understanding of the trehalose recycling mechanism in Mycobacteria and also demonstrates the potential of single-particle cryo-EM to explore the dynamic structures of other ABC transporters and molecular machines.

8.
Proc Natl Acad Sci U S A ; 120(35): e2307625120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603751

ABSTRACT

Trehalose plays a crucial role in the survival and virulence of the deadly human pathogen Mycobacterium tuberculosis (Mtb). The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the sole pathway for trehalose to enter Mtb. The substrate-binding protein, LpqY, which forms a stable complex with the translocator SugABC, recognizes and captures trehalose and its analogues in the periplasmic space, but the precise molecular mechanism for this process is still not well understood. This study reports a 3.02-Å cryoelectron microscopy structure of trehalose-bound Mtb LpqY-SugABC in the pretranslocation state, a crystal structure of Mtb LpqY in a closed form with trehalose bound and five crystal structures of Mtb LpqY in complex with different trehalose analogues. These structures, accompanied by substrate-stimulated ATPase activity data, reveal how LpqY recognizes and binds trehalose and its analogues, and highlight the flexibility in the substrate binding pocket of LpqY. These data provide critical insights into the design of trehalose analogues that could serve as potential molecular probe tools or as anti-TB drugs.


Subject(s)
Mycobacterium tuberculosis , Humans , Cryoelectron Microscopy , Trehalose , ATP-Binding Cassette Transporters , Molecular Probes
9.
ChemMedChem ; 18(15): e202300211, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37264975

ABSTRACT

Twelve N2'-branched acyclic nucleoside phosphonates and bisphosphonates were synthesized as potential inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), the key enzyme in the purine salvage pathway for production of purine nucleotides. The chemical structures were designed with the aim to study selectivity of the inhibitors for PfHGXPRT over human HGPRT. The newly prepared compounds contain 9-deazahypoxanthine connected to a phosphonate group via a five-atom-linker bearing a nitrogen atom (N2') as a branching point. All compounds, with the additional phosphonate group(s) in the second aliphatic linker attached to N2' atom, were low micromolar inhibitors of PfHGXPRT with low to modest selectivity for the parasite enzyme over human HGPRT. The effect of the addition of different chemical groups/linkers to N2' atom on the inhibition constants and selectivity is discussed.


Subject(s)
Antimalarials , Organophosphonates , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/pharmacology , Nucleosides/pharmacology , Nucleosides/chemistry , Plasmodium falciparum , Organophosphonates/pharmacology , Organophosphonates/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Pentosyltransferases , Hypoxanthines/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
10.
Mol Cell ; 83(12): 2137-2147.e4, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37244256

ABSTRACT

Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the ß subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.


Subject(s)
Adenosine Triphosphate , Proton-Translocating ATPases , Humans , Cryoelectron Microscopy , Adenosine Triphosphate/metabolism , Proton-Translocating ATPases/chemistry , Protein Conformation
12.
Proc Natl Acad Sci U S A ; 120(18): e2216713120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098072

ABSTRACT

Human complex II is a key protein complex that links two essential energy-producing processes: the tricarboxylic acid cycle and oxidative phosphorylation. Deficiencies due to mutagenesis have been shown to cause mitochondrial disease and some types of cancers. However, the structure of this complex is yet to be resolved, hindering a comprehensive understanding of the functional aspects of this molecular machine. Here, we have determined the structure of human complex II in the presence of ubiquinone at 2.86 Å resolution by cryoelectron microscopy, showing it comprises two water-soluble subunits, SDHA and SDHB, and two membrane-spanning subunits, SDHC and SDHD. This structure allows us to propose a route for electron transfer. In addition, clinically relevant mutations are mapped onto the structure. This mapping provides a molecular understanding to explain why these variants have the potential to produce disease.


Subject(s)
Protein Structure, Quaternary , Humans , Models, Molecular , Mutation , Cryoelectron Microscopy
13.
Eur J Med Chem ; 254: 115383, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37087894

ABSTRACT

Purple acid phosphatases (PAPs) are ubiquitous binuclear metallohydrolases that have been isolated from various animals, plants and some types of fungi. In humans and mice, elevated PAP activity in osteoclasts is associated with osteoporosis, making human PAP an attractive target for the development of anti-osteoporotic drugs. Based on previous studies focusing on phosphonate scaffolds, as well as a new crystal structure of a PAP in complex with a derivative of a previously synthesized α-aminonaphthylmethylphosphonic acid, phosphonates 24-40 were designed as new PAP inhibitor candidates. Subsequent docking studies predicted that all of these compounds are likely to interact strongly with the active site of human PAP and most are likely to interact strongly with the active site of pig PAP. The seventeen candidates were synthesized with good yields and nine of them (26-28, 30, 33-36 and 38) inhibit in the sub-micromolar to nanomolar range against pig PAP, with 28 and 35 being the most potent mammalian PAP inhibitors reported with Ki values of 168 nM and 186 nM, respectively. This study thus paves the way for the next stage of drug development for phosphonate inhibitors of PAPs as anti-osteoporotic agents.


Subject(s)
Organophosphonates , Osteoporosis , Humans , Swine , Animals , Mice , Glycoproteins/chemistry , Acid Phosphatase , Plants , Organophosphonates/pharmacology , Mammals
14.
Protein Cell ; 14(6): 448-458, 2023 06 07.
Article in English | MEDLINE | ID: mdl-36882106

ABSTRACT

The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.


Subject(s)
Mycobacterium tuberculosis , Siderophores , Siderophores/chemistry , Siderophores/metabolism , Iron/metabolism , Mycobacterium tuberculosis/metabolism , Cryoelectron Microscopy , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters
15.
J Agric Food Chem ; 71(13): 5117-5126, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943718

ABSTRACT

Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined the crystal structure of AS in complex with wildtype Arabidopsis thaliana AHAS (AtAHAS) and with the resistance mutant, S653T. In both structures, the cofactor, ThDP, is modified to a peracetate adduct, consistent with time-dependent accumulative inhibition. Compared to other AHAS-inhibiting herbicides of the sulfonylurea family, AS lacks a second aromatic ring. The replacement is an aryl sulfonyl group with a reduced number of interactions with the enzyme and relatively low affinity (Ki = 4.2 µM vs low nM when two heteroaromatic rings are present). This study shows that effective herbicides can have a relatively high Ki for plant AHAS but can still be a potent herbicide provided accumulative inhibition also occurs.


Subject(s)
Acetolactate Synthase , Arabidopsis , Herbicides , Arabidopsis/metabolism , Acetolactate Synthase/chemistry , Herbicides/chemistry , Sulfonylurea Compounds/chemistry , Herbicide Resistance
16.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36385513

ABSTRACT

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Subject(s)
Hydro-Lyases , Amino Acid Sequence , Hydro-Lyases/chemistry , Binding Sites , Catalysis
17.
Cell ; 185(23): 4347-4360.e17, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36335936

ABSTRACT

Decoration of cap on viral RNA plays essential roles in SARS-CoV-2 proliferation. Here, we report a mechanism for SARS-CoV-2 RNA capping and document structural details at atomic resolution. The NiRAN domain in polymerase catalyzes the covalent link of RNA 5' end to the first residue of nsp9 (termed as RNAylation), thus being an intermediate to form cap core (GpppA) with GTP catalyzed again by NiRAN. We also reveal that triphosphorylated nucleotide analog inhibitors can be bonded to nsp9 and fit into a previously unknown "Nuc-pocket" in NiRAN, thus inhibiting nsp9 RNAylation and formation of GpppA. S-loop (residues 50-KTN-52) in NiRAN presents a remarkable conformational shift observed in RTC bound with sofosbuvir monophosphate, reasoning an "induce-and-lock" mechanism to design inhibitors. These findings not only improve the understanding of SARS-CoV-2 RNA capping and the mode of action of NAIs but also provide a strategy to design antiviral drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase , Antiviral Agents/chemistry , Nucleotides/chemistry , Viral Nonstructural Proteins/metabolism
18.
Structure ; 30(10): 1395-1402.e4, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35981536

ABSTRACT

New anti-tubercular agents are urgently needed to address the emerging threat of drug resistance to human tuberculosis. Here, we have used structure-assisted methods to develop compounds that target mycobacterial membrane protein large 3 (MmpL3). MmpL3 is essential for the transport of mycolic acids, an important cell-wall component of mycobacteria. We prepared compounds that potently inhibit the growth of Mycobacterium tuberculosis (Mtb) and other mycobacteria in cell culture. The cryoelectron microscopy (cryo-EM) structure of mycobacterial MmpL3 in complex with one of these compounds (ST004) was determined using lipid nanodiscs at an overall resolution of 3.36 Å. The structure reveals the binding mode of ST004 to MmpL3, with the S4 and S5 subsites of the inhibitor-binding pocket in the proton translocation channel playing vital roles. These data are a promising starting point for the development of anti-tuberculosis drugs that target MmpL3.


Subject(s)
Mycobacterium tuberculosis , Mycolic Acids , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Humans , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids/metabolism , Protons
19.
Front Plant Sci ; 13: 909073, 2022.
Article in English | MEDLINE | ID: mdl-35845697

ABSTRACT

Herbicides are commonly deployed as the front-line treatment to control infestations of weeds in native ecosystems and among crop plants in agriculture. However, the prevalence of herbicide resistance in many species is a major global challenge. The specificity and effectiveness of herbicides acting on diverse weed species are tightly linked to targeted proteins. The conservation and variance at these sites among different weed species remain largely unexplored. Using novel genome data in a genome-guided approach, 12 common herbicide-target genes and their coded proteins were identified from seven species of Weeds of National Significance in Australia: Alternanthera philoxeroides (alligator weed), Lycium ferocissimum (African boxthorn), Senecio madagascariensis (fireweed), Lantana camara (lantana), Parthenium hysterophorus (parthenium), Cryptostegia grandiflora (rubber vine), and Eichhornia crassipes (water hyacinth). Gene and protein sequences targeted by the acetolactate synthase (ALS) inhibitors and glyphosate were recovered. Compared to structurally resolved homologous proteins as reference, high sequence conservation was observed at the herbicide-target sites in the ALS (target for ALS inhibitors), and in 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (target for glyphosate). Although the sequences are largely conserved in the seven phylogenetically diverse species, mutations observed in the ALS proteins of fireweed and parthenium suggest resistance of these weeds to ALS-inhibiting and other herbicides. These protein sites remain as attractive targets for the development of novel inhibitors and herbicides. This notion is reinforced by the results from the phylogenetic analysis of the 12 proteins, which reveal a largely consistent vertical inheritance in their evolutionary histories. These results demonstrate the utility of high-throughput genome sequencing to rapidly identify and characterize gene targets by computational methods, bypassing the experimental characterization of individual genes. Data generated from this study provide a useful reference for future investigations in herbicide discovery and development.

20.
Nat Commun ; 13(1): 3368, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690625

ABSTRACT

Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide.


Subject(s)
Acetolactate Synthase , Herbicides , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Crops, Agricultural/metabolism , Herbicides/chemistry , Herbicides/pharmacology , Mutation , Plant Weeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL