Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 80: 103463, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822849

ABSTRACT

Previous research in our laboratory showed that acetaminophen (ACE) induced embryonic mortality and abnormalities in zebrafish. Here, we examined the dose response of ACE (0.05-50 µg L-1) in zebrafish embryos. Concentrations as low as 0.1 µg L-1 significantly increased abnormalities, and all test concentrations significantly increased mortality rates. In mammals, ACE inhibits cyclooxygenase (COX) enzymes to decrease prostaglandin production. Here we report COX activity and expression of the cox-1, cox-2a, and cox-2b genes in zebrafish embryos. COX activity was significantly inhibited by specific mammalian cox-1 (SC-560) and cox-2 (DuP-697) inhibitors in unexposed and ACE-exposed embryos. COX activity declined with development time. Maternal transcripts of all cox genes were found at 1 -h post fertilization and embryonic expression began in gastrulation or early segmentation. Co-exposure of ACE and prostaglandin E2 abolished the ACE-induced effects. This strongly supports that ACE elicits embryo toxicity in zebrafish though the same molecular mechanism of action of their therapeutic effects in mammals.


Subject(s)
Acetaminophen/toxicity , Dinoprostone/pharmacology , Embryo, Nonmammalian/drug effects , Zebrafish/abnormalities , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/enzymology , Female , Male , Prostaglandin-Endoperoxide Synthases/genetics , Zebrafish/genetics
2.
Clin Transl Allergy ; 8: 5, 2018.
Article in English | MEDLINE | ID: mdl-29456832

ABSTRACT

BACKGROUND: Eosinophil-lineage committed progenitor cells (EoP) migrate from the bone marrow and differentiate locally to provide an ongoing source of mature eosinophils in asthmatic inflammatory responses in the airways. Sputum levels of EoP are increased in asthmatics compared to normal controls suggesting an exaggerated eosinophilopoietic environment in the airways. Understanding what factors promote EoP traffic to the airways is important to understand the diathesis of asthma pathology. Interleukin (IL)-25, is an epithelial-derived cytokine that promotes type 2 inflammatory responses. We have previously shown that levels of IL-25 and expression of the IL-25 receptor (IL-17RA and IL-17RB) on mature eosinophils are greater in allergic asthmatics compared to atopic non-asthmatics and non-atopic normal controls. In addition, these levels were increased significantly increased following allergen inhalation challenge and physiologically relevant levels of IL-25 stimulated eosinophil degranulation, intracellular IL-5 and IL-13 expression and primed migration to eotaxin. The current study, examined the role of IL-25 on allergen-induced trafficking of EoP in atopic asthmatics. METHODS: Asthmatics (n = 14) who developed allergen-induced early and late responses were enrolled in the study. Blood was collected at pre- and 24 h post-challenge. At each time point, surface expression of IL-17RA and IL-17RB on EoP was evaluated by flow cytometry. Migration assays examined the effect of IL-25 on EoP chemotactic responses, in vitro. In addition, IL-25 knockout ovalbumin (OVA) sensitized and challenged mice were studied to evaluate in vivo mobilization effects of IL-25 on newly formed EoP and mature eosinophils. RESULTS: There was a significant increase in numbers of blood EoP expressing IL-17RB, 24 h post-allergen inhalation challenge in allergic asthmatics. Pre-exposure to IL-25 primed the migrational responsiveness of EoP to stromal cell-derived factor 1α. In OVA-sensitized mice, knocking out IL-25 significantly alleviated OVA-induced eosinophil infiltration in the airway and newly formed eosinophils were reduced in the lung. CONCLUSIONS: The findings of this study indicate a potential role for IL-25 in allergen-induced trafficking of EoP to the airways and local differentiation promoting tissue eosiniophilia in asthmatic responses.

3.
J Allergy Clin Immunol ; 135(6): 1594-602, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25656998

ABSTRACT

BACKGROUND: Thymic stromal lymphopoietin (TSLP) and IL-33 are considered important initiators of type 2 immunity. In asthmatic patients allergic inflammatory responses are associated with increased lung homing of bone marrow-derived CD34(+) hematopoietic progenitor cells (HPCs), which include eosinophil lineage-committed progenitor cells. In this study we investigated the role of TSLP and IL-33 in the recruitment of progenitor cells to the airways in asthmatic subjects. OBJECTIVES: We sought (i) to examine the effect of allergen inhalation challenge on expression levels of receptors for TSLP (thymic stromal lymphopoietin receptor [TSLPR] and CD127) and IL-33 (ST2) and (ii) investigate the functional effects of these cytokines on HPCs. METHODS: Consenting patients with mild atopic asthma (n = 19) with an FEV1 of 70% or greater and methacholine PC20 of 16 mg/mL or less were recruited. Blood- and sputum-extracted progenitors were phenotyped by flow cytometry before and 24 hours after allergen challenge. Functional responses, including cytokine production and migration to TSLP and IL-33, were assessed in vitro. RESULTS: Significant increases in mature eosinophil, HPC, and eosinophil lineage-committed progenitor cell counts in sputum were observed 24 hours after allergen and were associated with a significant allergen-induced increase in HPCs expressing TSLPR, CD127, and ST2. Pre-exposure to TSLP and IL-33 primed the migration of HPCs to a potent progenitor cell chemoattractant, stromal cell-derived factor 1α (CXCL12). Incubation with TSLP and IL-33 stimulated significant production of IL-5 and IL-13, but not IL-4, by HPCs. This priming effect was inhibited by blocking antibodies to TSLPR and ST2, respectively, and IL-13 receptor α1 in both scenarios. CONCLUSIONS: In allergic asthmatic responses increased lung homing of HPCs may be orchestrated by TSLP and IL-33 through an IL-13-dependent axis.


Subject(s)
Asthma/immunology , Cytokines/immunology , Eosinophils/immunology , Hematopoietic Stem Cells/immunology , Interleukins/immunology , Administration, Inhalation , Adult , Allergens/pharmacology , Asthma/genetics , Asthma/pathology , Cell Movement/drug effects , Chemokine CXCL12/genetics , Chemokine CXCL12/immunology , Cytokines/genetics , Eosinophils/drug effects , Eosinophils/pathology , Forced Expiratory Volume , Gene Expression Regulation , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13 Receptor alpha1 Subunit/genetics , Interleukin-13 Receptor alpha1 Subunit/immunology , Interleukin-33 , Interleukin-5/genetics , Interleukin-5/immunology , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/immunology , Interleukins/genetics , Male , Methacholine Chloride/pharmacology , Middle Aged , Primary Cell Culture , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Sputum/cytology , Sputum/immunology , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL