Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Proc Biol Sci ; 291(2018): 20231529, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471546

ABSTRACT

Mutations allowing pathogens to escape host immunity promote the spread of infectious diseases in heterogeneous host populations and can lead to major epidemics. Understanding the conditions that slow down this evolution is key for the development of durable control strategies against pathogens. Here, we use theory and experiments to compare the efficacy of three strategies for the deployment of resistance: (i) a mixing strategy where the host population contains two single-resistant genotypes, (ii) a pyramiding strategy where the host carries a double-resistant genotype, (iii) a combining strategy where the host population is a mix of a single-resistant genotype and a double-resistant genotype. First, we use evolutionary epidemiology theory to clarify the interplay between demographic stochasticity and evolutionary dynamics to show that the pyramiding strategy always yields lower probability of evolutionary emergence. Second, we test experimentally these predictions with the introduction of bacteriophages into bacterial populations where we manipulated the diversity and the depth of immunity using a Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated (CRISPR-Cas) system. These biological assays confirm that pyramiding multiple defences into the same host genotype and avoiding combination with single-defence genotypes is a robust way to reduce pathogen evolutionary emergence. The experimental validation of these theoretical recommendations has practical implications in various areas, including for the optimal deployment of resistance varieties in agriculture and for the design of durable vaccination strategies.


Subject(s)
Bacteriophages , Communicable Diseases , Humans , Bacteria/genetics , Mutation , CRISPR-Cas Systems
2.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37788575

ABSTRACT

Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.


Subject(s)
Escherichia coli , Quinolones , Plasmids , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Mutation , Gene Transfer, Horizontal
3.
Nat Ecol Evol ; 6(10): 1480-1488, 2022 10.
Article in English | MEDLINE | ID: mdl-35970864

ABSTRACT

The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.


Subject(s)
Bacteriophages , Clustered Regularly Interspaced Short Palindromic Repeats , Bacteria/genetics , Bacteriophages/genetics
4.
Front Plant Sci ; 9: 1662, 2018.
Article in English | MEDLINE | ID: mdl-30559748

ABSTRACT

Plant strategies for soil nutrient uptake have the potential to strongly influence plant-microbiota interactions, due to the competition between plants and microorganisms for soil nutrient acquisition and/or conservation. In the present study, we investigate whether these plant strategies could influence rhizosphere microbial activities via root exudation, and contribute to the microbiota diversification of active bacterial communities colonizing the root-adhering soil (RAS) and inhabiting the root tissues. We applied a DNA-based stable isotope probing (DNA-SIP) approach to six grass species distributed along a gradient of plant nutrient resource strategies, from conservative species, characterized by low nitrogen (N) uptake, a long lifespans and low root exudation level, to exploitative species, characterized by high rates of photosynthesis, rapid rates of N uptake and high root exudation level. We analyzed their (i) associated microbiota composition involved in root exudate assimilation and soil organic matter (SOM) degradation by 16S-rRNA-based metabarcoding. (ii) We determine the impact of root exudation level on microbial activities (denitrification and respiration) by gas chromatography. Measurement of microbial activities revealed an increase in denitrification and respiration activities for microbial communities colonizing the RAS of exploitative species. This increase of microbial activities results probably from a higher exudation rate and more diverse metabolites by exploitative plant species. Furthermore, our results demonstrate that plant nutrient resource strategies have a role in shaping active microbiota. We present evidence demonstrating that plant nutrient use strategies shape active microbiota involved in root exudate assimilation and SOM degradation via root exudation.

SELECTION OF CITATIONS
SEARCH DETAIL
...