Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 208
1.
Aust Endod J ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38773855

To use scanning electron microscopy and energy dispersive X-ray spectroscopy to evaluate the metallurgical-chemical changes of WaveOne Gold (WOG) and R-Motion (RM), after multiple uses. The instruments were divided into groups (n = 8): WOG and RM-control groups, new instruments; WOG1 and RM1; WOG2 and RM2; WOG3 and RM3 after instrumentation of 1, 2 or 3 molars, respectively. Burrs occurred mainly in the control group and after the first use. The RM files were found to have a higher nickel content, which increased during reuse, and a decrease in oxygen content with increasing reuse, in addition to calcium impregnation, which occurred in greater amounts in the corrosion areas in the WOG files. The presence of topographic and chemical changes was demonstrated, indicating that caution should be taken when reusing endodontic instruments to avoid fractures.

3.
Biomed Opt Express ; 15(4): 2666-2680, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38633085

Second harmonic generation (SHG) allows for the examination of collagen structure in collagenous tissues. Collagen is a fibrous protein found in abundance in the human body, present in bones, cartilage, the skin, and the cornea, among other areas, providing structure, support, and strength. Its structural arrangement is deeply intertwined with its function. For instance, in the cornea, alterations in collagen organization can result in severe visual impairments. Using SHG imaging, various metrics have demonstrated the potential to study collagen organization. The discrimination between healthy, keratoconus, and crosslinked corneas, assessment of injured tendons, or the characterization of breast and ovarian tumorous tissue have been demonstrated. Nevertheless, these metrics have not yet been objectively evaluated or compared. A total of five metrics were identified and implemented from the literature, and an additional approach adapted from texture analysis was proposed. In this study, we analyzed their effectiveness on a ground-truth set of artificially generated fibrous images. Our investigation provides the first comprehensive assessment of the performance of multiple metrics, identifying both the strengths and weaknesses of each approach and providing valuable insights for future applications of SHG imaging in medical diagnostics and research.

4.
Hypertension ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38660828

BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning-derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). METHODS: The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. RESULTS: For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P=3.61×10-28), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. CONCLUSIONS: The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.

5.
JCI Insight ; 9(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38587077

To unravel the heterogeneity and molecular signature of effector memory Th2 cells (Tem2), we analyzed 23 individuals' PBMCs of filaria-infected (Filaria+) and 24 healthy volunteers (Filaria-), with or without coincident house dust mite (HDM) allergic sensitization. Flow cytometry revealed 3 CD4+ Tem subsets - CCR4+CCR6+CRTH2- Tem17, CCR4+CCR6-CRTH2+ Tem2, and CCR6+CCR4+CRTH2+ Tem17.2 - markedly enriched in Filaria+ individuals. These subsets were sorted and analyzed by multiomic single-cell RNA immunoprofiling. SingleR-annotated Th2 cells from Tem2 and Tem17.2 cell subsets had features of pathogenic Th2 effector cells based on their transcriptional signatures, with downregulated CD27 and elevated expression levels of ITGA4, IL17RB, HPGDS, KLRB1, PTGDR2, IL9R, IL4, IL5, and IL13 genes. When the Filaria+ individuals were subdivided based on their allergic status, Tem2 cells in HDM+Filaria+ individuals showed an overall reduction in TCR diversity, suggesting the occurrence of antigen-driven clonal expansion. Moreover, HDM+Filaria+ individuals showed not only an expansion in the frequency of both Tem2 and Tem17.2 cell subsets, but also a change in their molecular program by overexpressing GATA3, IL17RB, CLRF2, and KLRB1, as well as increased antigen-induced IL-4, IL-5, and IL-13 production, suggesting that aeroallergens reshape the transcriptional and functional programming of Th2 cell subsets in human filarial infection toward a pathogenic immunophenotype.


Hypersensitivity , T-Lymphocyte Subsets , Animals , Humans , Th2 Cells , Allergens , Pyroglyphidae
6.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Article En | MEDLINE | ID: mdl-38500680

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Colonic Neoplasms , Liposomes , Nanoparticles , Tumor Microenvironment , Animals , Mice , Ligands , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Tumor Necrosis Factor-alpha , TNF-Related Apoptosis-Inducing Ligand/metabolism
7.
Eur J Pharm Biopharm ; 197: 114212, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342421

Capsaicin (CAP) has been implicated as a gastroprotective agent in the treatment of peptic ulcers. However, its oral administration is hampered by its poor aqueous solubility and caustic effect at high administered doses. To address these limitations, we describe the development of gastric floating, sustained release electrospun films loaded with CAP. The nanofiber films were formulated using the polymers Eudragit RL/RS and sodium bicarbonate (SB) as the effervescent agent. The films were tested for their physicochemical properties, and film buoyancy and in vitro release of CAP were assessed in simulated gastric fluid. The cytocompatibility and anti-inflammatory properties of the films were evaluated in lipopolysaccharide (LPS)-stimulated Caco-2 cells. The amorphous films showed improved wettability, a short floating lag time (<1 s) and a total floating time of over 24 h accompanied by sustained CAP release for up to 24 h. CAP-loaded films demonstrated biocompatibility with Caco-2 cells and potential cytoprotective effects by attenuating inflammatory cytokine and reactive oxygen species (ROS) production in LPS-stimulated Caco-2 cells. The gastric floating electrospun films could serve as a platform for sustained and stomach-specific drug delivery applications.


Capsaicin , Lipopolysaccharides , Humans , Delayed-Action Preparations/chemistry , Caco-2 Cells , Drug Delivery Systems , Solubility , Tablets
8.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38169294

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Alphavirus Infections , Arthritis , Chemokine CCL2 , Receptors, CCR2 , Animals , Mice , Alphavirus , Alphavirus Infections/immunology , Arthritis/immunology , Arthritis/virology , Chemokine CCL2/immunology , Interleukin-6/immunology , Mice, Inbred C57BL , Receptors, CCR2/immunology , Mice, Knockout , Male , Bone Diseases/virology
9.
Nat Commun ; 15(1): 590, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238326

A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.


COVID-19 , DNA, B-Form , Vaccines, DNA , Female , Animals , Humans , SARS-CoV-2/genetics , Vaccines, DNA/genetics , Nanovaccines , COVID-19 Vaccines , COVID-19/prevention & control , DNA , Antibodies, Neutralizing , Antibodies, Viral
10.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091634

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Zika Virus Infection , Zika Virus , Humans , Mice , Animals , RNA, Small Interfering , Tissue Distribution , Brain , Immunity , Chemokine CXCL12/genetics
11.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Article En | MEDLINE | ID: mdl-38066332

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Necrosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/genetics
12.
Phytomedicine ; 123: 155197, 2024 Jan.
Article En | MEDLINE | ID: mdl-37952409

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Dioxolanes , Glycosides , Lignans , Naphthalenes , Phyllanthus , Zika Virus Infection , Zika Virus , Infant, Newborn , Animals , Humans , Chlorocebus aethiops , Zika Virus Infection/drug therapy , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lignans/pharmacology , Lignans/therapeutic use , Virus Replication
13.
Braz. j. oral sci ; 23: e243355, 2024. ilus
Article En | LILACS, BBO | ID: biblio-1551649

Aim: This study aimed to perform an in vitro comparative analysis of the antifungal activity of different calcium silicate-based endodontic sealers against three fungal species. Methods: The antifungal properties of three calcium silicate-based sealers were tested: Bio-C Sealer, Cambiar a Sealer Plus BC, and MTA-Fillapex. Two commonly used sealers were used as controls: AH Plus and Endomethasone. An agar diffusion test was performed to analyze the antifungal activity of the sealers against Candida albicans, Candida glabrata, Candida tropicalis, and a mixed microbial culture medium. The results were analyzed using ANOVA (p <0.05). Results: Endomethasone exhibited the highest inhibition against all strains examined, maintaining a consistent level of inhibition throughout 7 days. MTA-Fillapex demonstrated the best performance among the calcium silicate-based sealers for the three fungal species (p < 0.05), maintaining stable values over the 7 days, surpassing that of Endomethasone. Nevertheless, MTA-Fillapex only exhibited antimicrobial effect against the mixed culture for the first 24 hours, and no antimicrobial activity was observed at 48 hours, being surpassed by all tested sealers (p < 0.05). Conclusion: Of all silicate-based sealers tested, only MTA-Fillapex exhibited promising antifungal activity. Nevertheless, care must be taken when extrapolating these results, as MTA-Fillapex exhibited poor antimicrobial activity when tested in mixed microbial cultures


Root Canal Filling Materials , Silicate Cement , Bacteria , Candida albicans , Candida glabrata , Candida tropicalis , Endodontics , Antifungal Agents/analysis
14.
J Clin Exp Dent ; 15(11): e895-e903, 2023 Nov.
Article En | MEDLINE | ID: mdl-38074171

Background: The success of endodontic treatment can be influenced by the type of endodontic sealer used, as certain sealers may be prone to apical microleakage, leading to treatment failure. The limitations of currently available sealers necessitate the development of new materials to improve the success rate of endodontic treatment. Therefore, the objective of this study was to assess the apical microleakage of newly developed hydroxyapatite-based endodontic sealers, including one derived from eggshells, and compare them with other commercially available sealers. Material and Methods: Eighty-five extracted human upper anterior teeth were selected for this study. The teeth were divided into 5 experimental groups and 2 control groups. The experimental groups were designated as follows: (1) HPSINT - obturated with gutta-percha cone and synthetic hydroxyapatite-based sealer, (2) BIOC - obturated with gutta-percha cone and Bio C-Sealer sealer, (3) AHPLUS-BC - obturated with gutta-percha cone and AHPLUS Bioceramic sealer, (4) AHP - obturated with gutta-percha cone and AHPLUS sealer, and (5) HPO - obturated with gutta-percha cone and sealer based on hydroxyapatite extracted from eggshells. Additionally, there were positive and negative control groups consisting of instrumented teeth filled with gutta-percha cones without any sealer and instrumented teeth without any filling, respectively. Methylene blue dye penetration was used to assess apical microleakage. Descriptive statistical analysis and Shapiro-Wilk normality test were applied to the observed results. As the samples followed a normal distribution, the ANOVA test was applied. Results: The control groups confirmed the validity of the experimental method, while the experimental groups showed varying degrees of dye penetration. The group obturated with Bio C-Sealer exhibited the highest mean apical microleakage, while AHPLUS Bioceramic sealer demonstrated lower mean than AHPLUS sealer and sealer based on hydroxyapatite extracted from eggshells (p<0.05). Finally, there was no difference between the synthetic hydroxyapatite-based sealer and AHPLUS Bioceramic sealer, AHPLUS sealer and sealer based on hydroxyapatite extracted from eggshells (p>0.05). No significant difference was observed between the hydroxyapatite-based sealers and the AHPLUS-BC sealer. Conclusions: The results of this study suggest that the newly developed hydroxyapatite-based endodontic sealers, including the one derived from eggshells, may have a lower risk of apical microleakage compared to other commercially available sealers. These findings highlight the potential of hydroxyapatite-based sealers to improve the success rate of endodontic treatment. Further research and clinical studies are warranted to validate these results and explore the long-term effects of these novel sealers. Key words:Endodontic treatment, apical microleakage, endodontic sealer, hydroxyapatite, eggshell-derived sealer.

15.
Cureus ; 15(10): e46426, 2023 Oct.
Article En | MEDLINE | ID: mdl-37927661

Wolfram syndrome is a rare, multisystemic, progressive, and autosomal-recessive genetic disease, characterized by diabetes mellitus and diabetes insipidus, optic nerve atrophy, deafness, and other neurological signs. The diagnosis is usually based on history and clinical manifestations but genetic tests are necessary for confirmation. Currently, there are no treatments available to cure or delay disease progression. This report describes a case of a 23-year-old male diagnosed with Wolfram syndrome who presented to the emergency department with several episodes of loss of consciousness. This case reinforces the need for an early diagnosis of obstructive and central apneas, respiratory failure, and dysphagia, in order to prevent and treat the complications of this disease and to improve patients' quality of life.

16.
Int J Nanomedicine ; 18: 5891-5904, 2023.
Article En | MEDLINE | ID: mdl-37873551

Introduction: Chimeric antigen receptor (CAR) cell therapy represents a hallmark in cancer immunotherapy, with significant clinical results in the treatment of hematological tumors. However, current approved methods to engineer T cells to express CAR use viral vectors, which are integrative and have been associated with severe adverse effects due to constitutive expression of CAR. In this context, non-viral vectors such as ionizable lipid nanoparticles (LNPs) arise as an alternative to engineer CAR T cells with transient expression of CAR. Methods: Here, we formulated a mini-library of LNPs to deliver pDNA to T cells by varying the molar ratios of excipient lipids in each formulation. LNPs were characterized and screened in vitro using a T cell line (Jurkat). The optimized formulation was used ex vivo to engineer T cells derived from human peripheral blood mononuclear cells (PBMCs) for the expression of an anti-CD19 CAR (CAR-CD19BBz). The effectiveness of these CAR T cells was assessed in vitro against Raji (CD19+) cells. Results: LNPs formulated with different molar ratios of excipient lipids efficiently delivered pDNA to Jurkat cells with low cytotoxicity compared to conventional transfection methods, such as electroporation and lipofectamine. We show that CAR-CD19BBz expression in T cells was transient after transfection with LNPs. Jurkat cells transfected with our top-performing LNPs underwent activation when exposed to CD19+ target cells. Using our top-performing LNP-9-CAR, we were able to engineer human primary T cells to express CAR-CD19BBz, which elicited significant specific killing of CD19+ target cells in vitro. Conclusion: Collectively, our results show that LNP-mediated delivery of pDNA is a suitable method to engineer human T cells to express CAR, which holds promise for improving the production methods and broader application of this therapy in the future.


Excipients , Nanoparticles , Humans , Leukocytes, Mononuclear , Plasmids/genetics , DNA/genetics , Lipids
17.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Article En | MEDLINE | ID: mdl-37781651

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

18.
Inflamm Res ; 72(10-11): 2073-2088, 2023 Nov.
Article En | MEDLINE | ID: mdl-37837557

OBJECTIVE AND DESIGN: The present study aimed to investigate the neurochemical and behavioral effects of the acute consequences after coronavirus infection through a murine model. MATERIAL: Wild-type C57BL/6 mice were infected intranasally (i.n) with the murine coronavirus 3 (MHV-3). METHODS: Mice underwent behavioral tests. Euthanasia was performed on the fifth day after infection (5 dpi), and the brain tissue was subjected to plaque assays for viral titration, ELISA, histopathological, immunohistochemical and synaptosome analysis. RESULTS: Increased viral titers and mild histological changes, including signs of neuronal degeneration, were observed in the cerebral cortex of infected mice. Importantly, MHV-3 infection induced an increase in cortical levels of glutamate and calcium, which is indicative of excitotoxicity, as well as increased levels of pro-inflammatory cytokines (IL-6, IFN-γ) and reduced levels of neuroprotective mediators (BDNF and CX3CL1) in the mice brain. Finally, behavioral analysis showed impaired motor, anhedonia-like and anxiety-like behaviors in animals infected with MHV-3. CONCLUSIONS: In conclusion, the data presented emulate many aspects of the acute neurological outcomes seen in patients with COVID-19. Therefore, this model may provide a preclinical platform to study acute neurological sequelae induced by coronavirus infection and test possible therapies.


COVID-19 , Murine hepatitis virus , Humans , Animals , Mice , Mice, Inbred C57BL , Murine hepatitis virus/metabolism , Cytokines/metabolism , COVID-19/pathology , Brain/metabolism
19.
Cell Mol Bioeng ; 16(4): 383-392, 2023 Aug.
Article En | MEDLINE | ID: mdl-37810998

Introduction: Multiple myeloma (MM) is a hematological blood cancer of the bone marrow that remains largely incurable, in part due to its physical interactions with the bone marrow microenvironment. Such interactions enhance the homing, proliferation, and drug resistance of MM cells. Specifically, adhesion receptors and homing factors, E-selectin (ES) and cyclophilin A (CyPA), respectively, expressed by bone marrow endothelial cells enhance MM colonization and dissemination. Thus, silencing of ES and CyPA presents a potential therapeutic strategy to evade MM spreading. However, small molecule inhibition of ES and CyPA expressed by bone marrow endothelial cells remains challenging, and blocking antibodies induce further MM propagation. Therefore, ES and CyPA are promising candidates for inhibition via RNA interference (RNAi). Methods: Here, we utilized a previously developed lipid-polymer nanoparticle for RNAi therapy, that delivers siRNA to the bone marrow perivascular niche. We utilized our platform to co-deliver ES and CyPA siRNAs to prevent MM dissemination in vivo. Results: Lipid-polymer nanoparticles effectively downregulated ES expression in vitro, which decreased MM cell adhesion and migration through endothelial monolayers. Additionally, in vivo delivery of lipid-polymer nanoparticles co-encapsulating ES and CyPA siRNA extended survival in a xenograft mouse model of MM, either alone or in combination with the proteasome inhibitor bortezomib. Conclusions: Our combination siRNA lipid-polymer nanoparticle therapy presents a vascular microenvironment-targeting strategy as a potential paradigm shift for MM therapies, which could be extended to other cancers that colonize the bone marrow. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00774-y.

20.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Article En | MEDLINE | ID: mdl-37310997

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Multiple Myeloma , United States , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Bone Marrow , RNA, Small Interfering/genetics , Endothelial Cells , Cyclophilin A , Lipids , Tumor Microenvironment
...