Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Microbiol ; 54(2): 1203-1215, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36821043

ABSTRACT

Inflammatory bowel diseases (IBD) are gastrointestinal disorders characterized by a breakdown in intestinal homeostasis by inflammatory immune responses to luminal antigens. Novel strategies for ameliorating IBD have been proposed in many studies using animal models. Our group has demonstrated that administration of Lactococcus lactis NCDO 2118 can improve clinical parameters of colitis induced by oral administration of dextran sulphate sodium (DSS). However, it is not clear whether other strains of L. lactis can yield the same effect. The objective of present study was to analyze the effects of three different L. lactis strains (NCDO2118, IL1403 and MG1363) in the development of DSS-induced colitis in C57BL/6 mice. Acute colitis was induced in C57/BL6 mice by the administration of 2% DSS during 7 consecutive days. Body weight loss and shortening of colon length were observed in DSS-treated mice, and none of L. lactis strains had an impact in these clinical signs of colitis. On the other hand, all strains improved the global macroscopical disease index and prevented goblet cells depletion as well as the increase of intestinal permeability. TNF-α production was reduced in gut mucosa of L. lactis DSS-treated mice indicating a modulation of a critical pro-inflammatory response by all strains tested. However, only L. lactis NCDO2118 and MG1363 induced a higher frequency of CD11c+CD11b-CD103+ tolerogenic dendritic cells in lymphoid organs of mice at steady state. We conclude that all tested strains of L. lactis improved the clinical scores and parameters of colitis, which confirm their anti-inflammatory properties in this model of colitis.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Lactococcus lactis , Animals , Mice , Lactococcus lactis/genetics , Mice, Inbred C57BL , Colitis/chemically induced , Inflammatory Bowel Diseases/chemically induced , Immunity , Disease Models, Animal
2.
Cell Immunol ; 384: 104661, 2023 02.
Article in English | MEDLINE | ID: mdl-36621093

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the central nervous system. Because of its complexity and the difficulty to treat, searching for immunoregulatory responses that reduce the clinical signs of disease by non-aggressive mechanisms and without adverse effects is a scientific challenge. Herein we propose a protocol of oral tolerance induction that prevented and controlled MOG-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The genetically modified strain HSP65-producing Lactococcus lactis was orally administered for 5 consecutive days either before or during disease development in mice. Both protocols of feeding HSP65 resulted in significant reduction in the clinical score of EAE. Frequencies of LAP+CD4+Foxp3- regulatory T cells were higher in spleens and inguinal lymph nodes of fed mice. In addition, intravital microscopy showed that adherence of leukocytes to venules in the spinal cord was reduced in orally treated mice. Oral treatment with HSP65-producing L.lactis prevented leukocytes to leave the secondary lymphoid organs, therefore they could not reach the central nervous system. Despite the inhibition of pathological immune response that drive EAE development, activated T cells were at normal frequencies suggesting that oral tolerance did not induce general immunosuppression, but it led to specific control of pathogenic T cells. Our results indicate a novel therapeutic strategy to prevent and control autoimmune diseases such as multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lactococcus lactis , Multiple Sclerosis , Mice , Animals , Mice, Inbred C57BL , Spinal Cord
3.
J Autoimmun ; 40: 45-57, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22939403

ABSTRACT

Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-ß - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.


Subject(s)
Bacterial Proteins/metabolism , Chaperonin 60/metabolism , Encephalomyelitis, Autoimmune, Experimental , Lactococcus lactis/metabolism , Mycobacterium leprae/genetics , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmunity , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , CD4 Antigens/metabolism , Chaperonin 60/biosynthesis , Chaperonin 60/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Female , Forkhead Transcription Factors/metabolism , Lactococcus lactis/genetics , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Spinal Cord/immunology , Spinal Cord/metabolism , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL