Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Colloid Interface Sci ; 674: 266-278, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38936083

ABSTRACT

The construction of heterojunctions can reduce the energy barrier for the oxygen evolution reaction (OER), which is crucial for the design of efficient electrocatalysts. A novel OER electrocatalyst, composed of g-C3N4-supported NiFeP spherical nanoclusters, was successfully synthesized using a simple hydrothermal method and a gas-phase precipitation method. Benefiting from its unique spherical nanocluster structure and strong electronic interactions among Ni, Fe, and P, the catalyst exhibited outstanding performance under alkaline conditions, with an overpotential of only 232 mV at a current density of 10 mA cm-2 and a Tafel slope of 103 mV dec-1. Additionally, the electrical resistance of NiFeP/g-C3N4 (Rct = 5.1 Ω) was much lower than that of NiFeP (Rct = 10.8 Ω) and layered g-C3N4 (Rct = 44.8 Ω). The formation of a Schottky barrier heterojunction efficiently reduced electron transfer impedance during the OER process, accelerating the electron transfer from g-C3N4 to NiFeP, enhancing the carrier concentration, and thereby improving the OER activity. Moreover, The robust g-C3N4 chain-mail protects NiFeP from adverse reaction environments, maintaining a balance between catalytic activity and stability. Furthermore, ab initio molecular dynamics (AIMD) and density functional theory (DFT) were conducted to explore the thermal stability and internal electron transfer behavior of the cluster heterojunction structure. This study offers a broader design strategy for the development of transition metal phosphide (TMPs) materials in the oxygen evolution reaction.

2.
Inorg Chem ; 62(42): 17052-17056, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37815023

ABSTRACT

Designing and innovating organic structure-directing agents is the key to synthesizing novel molecular sieve structures. Herein, we design a novel carbazolyl-modified template and further synthesize a two-dimensional layered aluminophosphate with [C17H21N2]3[Al3(PO4)4]·5H2O (denoted as ZHKU-2). ZHKU-2 is composed of AA-stacked [Al3P4O16]3- layers constructed from alternating AlO4 and PO3(=O) tetrahedrons to form a 4.6.8 network featured by capped six-ring secondary building units. Carbazolyl-templated ZHKU-2 exhibits strong purple fluorescence with a high quantum yield of 25.98%. This work expands aluminophosphate materials of the [Al3P4O16]3- family and provides a view for synthesizing new molecular sieves by exploring the organic luminescence structure-directing agents.

3.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298823

ABSTRACT

With the development of the chemical industry, benzene, toluene, ethylbenzene, and xylene (BTEX) have gradually become the major indoor air pollutants. Various gas treatment techniques are widely used to prevent the physical and mental health hazards of BTEX in semi-enclosed spaces. Chlorine dioxide (ClO2) is an alternative to chlorine as a secondary disinfectant with a strong oxidation ability, a wide range of action, and no carcinogenic effects. In addition, ClO2 has a unique permeability which allows it to eliminate volatile contaminants from the source. However, little attention has been paid to the removal of BTEX by ClO2, due to the difficulty of removing BTEX in semi-enclosed areas and the lack of testing methods for the reaction intermediates. Therefore, this study explored the performance of ClO2 advanced oxidation technology on both liquid and gaseous benzene, toluene, o-xylene, and m-xylene. The results showed that ClO2 was efficient in the removal of BTEX. The byproducts were detected by gas chromatography-mass spectrometry (GC-MS) and the reaction mechanism was speculated using the ab initio molecular orbital calculations method. The results demonstrated that ClO2 could remove the BTEX from the water and the air without causing secondary pollution.


Subject(s)
Air Pollution, Indoor , Benzene , Benzene/chemistry , Toluene/chemistry , Xylenes/chemistry , Air Pollution, Indoor/analysis , Benzene Derivatives/chemistry , Gases/analysis , Environmental Monitoring/methods
4.
Polymers (Basel) ; 14(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36236084

ABSTRACT

The investigation aims to study the effects of temperature and damage constitutive model on the energy absorption performance of polymeric origami tubes under quasi-static impact. The uniaxial tensile responses of 3D-printed polylactic acid (PLA) samples following standard ASTM-D412 have been studied to characterize the mechanical properties at three temperatures: 30 °C, 40 °C, and 50 °C. The damage constitutive model is used to accurately characterize the stress-strain relations of the PLA. Quasi-static compressive experiments are performed on polymetric tubes with different temperatures. The 3D-printed technique is used to ensure the integrated formation of these polymeric origami tubes. The user-defined material subroutine VUMAT for ABAQUS/Explicit has been developed for the damage model. Compared with the results, the observed deformation processes are well captured by the numerical simulations, and the influence of temperature on the axial compression is also analyzed in detail.

5.
Front Nutr ; 9: 1006127, 2022.
Article in English | MEDLINE | ID: mdl-36185644

ABSTRACT

Plant-derived polysaccharides have demonstrated promising anti-cancer effects via immune-regulatory activity. The aim of the current study was to compare the chemical property and the anticancer effects of polysaccharides extracted from the sporoderm-removed spores of the medicinal mushroom Ganoderma lucidum (RSGLP), which removed the sporoderm completely, with polysaccharides extracted from the sporoderm-broken spores of G. lucidum (BSGLP). We found that RSGLP has a higher extraction yield than BSGLP. HPGPC and GC-MS results revealed that both RSGLP and BSGLP are heteropolysaccharides, but RSGLP had a higher molecular weight and a different ratio of monosaccharide composition than BSGLP. MTT and flow cytometry results demonstrated that RSGLP exhibited much higher dose-efficacy in inhibiting cell viability and inducing apoptosis than BSGLP in 8 cancer cell lines representing colon (HCT116 and HT29), liver (HepG2 and Huh-7), breast (MDA-MB-231 and MCF-7), and lung cancers (NCI-H460 and A549). Furthermore, RSGLP is more effective in inhibiting HCT116 and NCI-H460 xenograft tumor growth and inhibiting tumor-induced splenomegaly than BSGLP in nude mice, suggesting a better effect on regulating immunity of RSGLP. Next, we found that RSGLP is more potent in inhibiting the level of serum inflammatory cytokines in nude mice, and in inhibiting the activation of macrophage RAW264.7 and the expression of the inflammatory mediators IL-1ß, TNF-α, iNOS, and COX-2 in vitro. This is the first study to compare the chemical properties, anti-cancer, and immune-regulatory effects of RSGLP and BSGLP using multiple cancer cell lines. Our results revealed that the sporoderm-removed spores of G. lucidum (RSGL) and RSGLP may serve as new anticancer agents for their promising immune-regulatory activity.

6.
Front Bioeng Biotechnol ; 10: 986355, 2022.
Article in English | MEDLINE | ID: mdl-36091451

ABSTRACT

Dynamic monitoring of tumor markers is an important way to the diagnosis of malignant tumor, evaluate the therapeutic effect of tumor and analyze the prognosis of cancer patients. As a tumor marker of digestive tract, CA242 is often used to Assess the therapeutic effect of colorectal cancer and pancreatic cancer. In this study, immunosensor technology was used to detect CA242. PdAgPt nanocomposites, which have great advantages in biocompatibility, electrical conductivity and catalytic properties, were prepared by hydrothermal synthesis method. The prepared PdAgPt nanocomposites were loaded onto the surface of molybdenum disulfide (MoS2) with large surface area, and the new nanocomposites were synthesized. Using PdAgPt/MoS2 as signal amplification platform, the label-free CA242 electrochemical immunosensor has a wide detection range that extends from 1*10-4 U/ml to 1*102 U/ml and a low detection limit (LOD, 3.43*10-5 U/ml) after optimization of experimental conditions. In addition, the CA242 immunosensor designed in this study also performed well in the evaluation of repeatability, selectivity and stability, and was successfully used for the detection of CA242 in human serum sample. Therefore, the label-free electrochemical immunosensor constructed in this study has a broad application prospect in the detection of clinical biomarkers.

7.
Polymers (Basel) ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36146002

ABSTRACT

Owing to deformation in the form of the diamond mode with high-energy absorption capacity, origami thin-walled tubes have attracted considerable attention in recent years. Stamping and welding are mainly employed to produce different types of origami thin-walled tubes. The processing defects and geometric asymmetry may be caused by the manufacturing process, which changes the collapsed mode and decreases the energy-absorbing capacity. In this study, fused filament fabrication (FFF) 3D printing is used to fabricate the origami-ending tube (OET) by integrated formation. Experiments and numerical simulations were conducted to study the influence of loading rate and temperature on the energy absorption of polymeric origami tubes under quasi-static loading. The experiments showed that different constitutive models are needed to capture the complex true stress-strain behavior of 3D printing polylactic acid (PLA) material at different temperatures. The damage model is established and then applied to the numerical simulations, which could predict the collapsed mode and the damage behavior of the OET tubes under different loading rates at 30 °C, 40 °C, and 50 °C. Based on the experiments and the validated numerical model, the influence of loading rate and temperature on the crashworthiness performance of the OET tubes is analyzed.

8.
Molecules ; 27(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35268672

ABSTRACT

Aiming at constructing photoresponsive spin crossover (SCO) behavior, herein we designed a new ligand Abtz (Abtz = (E)-N-(4-((E)-phenyldiazenyl)phenyl)-1-(thiazol-4-yl)methanimine) which was decorated by a photochromic azobenzene group. Based on this photochromic ligand, a mononuclear Fe(II) SCO molecule [Fe(Abtz)3](BF4)2·(EAC)2 (1, EAC = ethyl acetate) was successfully synthesized and showed a complete one-step SCO behavior. Under continuous UV light and blue-light exposure, the cis-trans photoisomerization of both ligand Abtz and compound 1 in the liquid phase was confirmed through UV-Vis spectra. Moreover, the 1H-NMR spectra of Abtz reveal a trans-cis conversion ratio of 37%. Although the UV-Vis spectra reveal the photochromic behavior for 1 in the solution phase, the SCO behavior in the liquid state is absent according to the variable-temperature Evans method, suggesting the possible decomposition. Moreover, in the solid state, the cis-trans photoisomerization of both Abtz and 1 was not observed, due to the steric hindrance.

9.
Front Bioeng Biotechnol ; 9: 767717, 2021.
Article in English | MEDLINE | ID: mdl-34957069

ABSTRACT

Carcinoembryonic antigen (CEA) is regarded as one of the crucial tumor markers for colorectal cancer. In this study, we developed the snowflake Cu2S/Pd/CuO nanocomposite to construct an original label-free electrochemical immunosensor for the ultrasensitive detection of CEA levels. The nanocomposite of cuprous sulfide (Cu2S) with Pd nanoparticles (Pd NPs) was synthesized through an in situ formation of Pd NPs on the Cu2S. Cuprous sulfide (Cu2S) and CuO can not only be used as a carrier to increase the reaction area but also catalyze the substrate to generate current signal. Palladium nanoparticles (Pd NPs) have excellent catalytic properties and good biocompatibility, as well as the ability of excellent electron transfer. The immunosensor was designed using 5 mmol/L H2O2 as the active substrate by optimizing the conditions with a detection range from 100 fg/ml to 100 ng/ml and a minimum detection limit of 33.11 fg/ml. The human serum was detected by electrochemical immunoassay, and the results were consistent with those of the commercial electrochemical immunosensor. Therefore, the electrochemical immunosensor can be used for the detection of human serum samples and have potential value for clinical application.

10.
Carbohydr Polym ; 267: 118231, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119183

ABSTRACT

This study investigated the effects of water-soluble polysaccharide extracted from the sporoderm-removed spores of Ganoderma lucidum (GLP) against AOM/DSS-induced inflammation, tumorigenesis, and gut microbiota modification, which has never been reported before. Our data revealed that GLP (200 and 300 mg/kg) decreased AOM/DSS-induced colitis and tumorigenesis, manifested by significantly reduced disease activity index score, and total number and size of tumors. Furthermore, GLP ameliorated AOM/DSS-induced microbiota dysbiosis, increased short-chain fatty acid production, and alleviated endotoxemia by inhibiting TLR4/MyD88/NF-κB signaling. Besides, GLP profoundly improved gut barrier function as evidenced by increased numbers of goblet cells, MUC2 secretion, and tight junction protein expressions. GLP treatment inhibited macrophage infiltration and downregulated IL-1ß, iNOS, and COX-2 expressions. Additionally, GLP inhibited lipopolysaccharides (LPS)-induced inflammation markers and MAPK (JNK and ERK) activation in macrophage RAW264.7, intestinal HT-29, and NCM460 cells. In conclusion, these results indicate that GLP is a promising prebiotic for the treatment of colorectal cancer.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticarcinogenic Agents/therapeutic use , Carcinogenesis/drug effects , Colitis/drug therapy , Fungal Polysaccharides/therapeutic use , Gastrointestinal Microbiome/drug effects , Animals , Azoxymethane , Cell Line, Tumor , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Colon/pathology , Colonic Neoplasms/pathology , Colonic Neoplasms/prevention & control , Dextran Sulfate , Dysbiosis/drug therapy , Humans , Inflammation/drug therapy , Inflammation/pathology , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Reishi/chemistry , Signal Transduction/drug effects
11.
Article in English | MEDLINE | ID: mdl-33936240

ABSTRACT

To evaluate the similarity of Huoling Shengji granule (HLG) and its placebo at both granules and solution status, the innovative methods that consist of intelligent sensory evaluation technologies and human sensory evaluation methods were developed based on critical quality attributes (CQAs) of granule. The CQAs for traditional Chinese medicine (TCM) placebo granule were mainly divided into three categories: formulation attributes, visual attributes, and attributes of taste and smell. In this investigation, the novel intelligent sensory evaluation technologies including the physical property testing apparatus, computer vision system, color card, and electronic tongue (E-tongue) were employed for characterization of CQAs of HLG and its placebo. Meanwhile, human sensory evaluation by test panels was used to description the HLG and its placebo in terms of appearance, color, taste, and smell. On that basis, the similarity of placebo to CQAs of HLG was assessed by calculating the angle cosine values. The intelligent and human sensory evaluation results showed that the similarity values of HLG and its placebo about the CQAs at granule and solution status were all close to 1, which means that the two preparations have high similarities. In this study, the established similarity evaluation methods based on the CQAs were convenient and reliable, which can be utilized to evaluate the similarity of TCM granule and their placebo at granule and solution status, and demonstrated to be well applied in placebo-controlled trials.

12.
Oncol Lett ; 21(5): 425, 2021 May.
Article in English | MEDLINE | ID: mdl-33850566

ABSTRACT

The sporoderm-broken spores of Ganoderma lucidum (G. lucidum) polysaccharide (BSGLP) have been demonstrated to inhibit carcinogenesis in several types of cancer. However, to the best of our knowledge, the anticancer effects of polysaccharides extracted from the newly developed sporoderm-removed spores of G. lucidum (RSGLP) have not been assessed. The present study first compared the anticancer effects of RSGLP and BSGLP in three gastric cancer cell lines and it was found that RSGLP was more potent than BSGLP in decreasing gastric cancer cell viability. RSGLP significantly induced apoptosis in AGS cells, accompanied by downregulation of Bcl-2 and pro-caspase-3 expression levels, and upregulation of cleaved-PARP. Furthermore, RSGLP increased LC3-II and p62 expression, indicative of induction of autophagy and disruption of autophagic flux in AGS cells. These results were further verified by combined treatment of AGS cells with the late-stage autophagy inhibitor chloroquine, or early-stage autophagy inducer rapamycin. Adenoviral transfection with mRFP-GFP-LC3 further confirmed that autophagic flux was inhibited by RSGLP in AGS cells. Finally, the present study demonstrated that the RSGLP-induced autophagy and disruption of autophagic flux disruption was, at least in part, responsible for RSGLP-induced apoptosis in AGS cells. The results of the present study demonstrated for the first time that RSGLP is more effective than BSGLP in inhibiting gastric cancer cell viability, and RSGLP may serve as a promising autophagy inhibitor in the management of gastric cancer.

13.
J Ethnopharmacol ; 273: 113964, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33640439

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qizhen capsule (QZC) is a traditional Chinese medicine (TCM) preparation that has been widely used in clinical practice and exerts promising therapeutic effects against breast, lung, and gastric cancers. However, studies have not reported whether QZC inhibits colorectal cancer (CRC) development and progression. Meanwhile, the underlying molecular mechanisms of its anticancer activity have not been studied. AIM OF THE STUDY: To investigate the anticancer effects of QZC on CRC and the possible underlying molecular mechanisms of QZC in vitro and in vivo. MATERIALS AND METHODS: The MTT assay and flow cytometry were used to determine the viability and apoptosis of HCT116 and HT-29 cancer cells. A xenograft nude mouse model was used to study the antitumor effects of QZC in vivo. Western blotting was performed to determine the expression of key proteins responsible for the molecular mechanisms elicited by QZC. Immunofluorescence staining was performed to detect the expression of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 or growth differentiation factor-15 (NAG-1/GDF15). Small interfering RNAs (siRNAs) were used to silence NAG-1/GDF15 in cells. RESULTS: In this study, QZC significantly reduced the viability of HCT116 and HT-29 cells and induced apoptosis in dose- and time-dependent manners, but displayed much less toxicity toward normal cells. QZC-induced apoptosis in HCT116 cells was accompanied by the deregulation of the expression of the Bcl-2, Bax, PARP, caspase-3, and caspase-9 proteins. Furthermore, QZC induced NAG-1/GDF15 expression in HCT116 cells, while silencing of NAG-1/GDF15 attenuated QZC-induced apoptosis and cell death. Next, QZC increased the phosphorylation of mTOR, AMPK, p38, and MAPK/ERK in HCT116 cells. We then demonstrated that QZC-induced apoptosis and NAG-1/GDF15 upregulation were mediated by MAPK/ERK activation. Moreover, QZC significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by NAG/GDF15 upregulation and MAPK/ERK activation. QZC also prevented 5-FU-induced weight loss or cachexia in tumor-bearing mice. The expression of Ki67 and PCNA was suppressed, while cleaved caspase-3 level and TUNEL staining were increased in the tumor sections from QZC-treated mice compared to the control. CONCLUSION: QZC is a novel anticancer agent for CRC that targets NAG-1/GDF15 via the MAPK/ERK signaling pathway.


Subject(s)
Colorectal Neoplasms/prevention & control , Drugs, Chinese Herbal/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Growth Differentiation Factor 15/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Extracellular Signal-Regulated MAP Kinases/genetics , Growth Differentiation Factor 15/genetics , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/genetics , Neoplasms, Experimental
14.
Carbohydr Polym ; 256: 117594, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483079

ABSTRACT

Ganoderma lucidum has been shown to have anti-obesity effects. However, polysaccharide extracted from the sporoderm-broken spores of Ganoderma lucidum (BSGLP) against obesity and its underlying mechanisms have never been reported. In the current study, we showed that BSGLP inhibited high-fat diet (HFD)-induced obesity, hyperlipidemia, inflammation, and fat accumulation in C57BL/6 J mice. BSGLP improved HFD-induced gut microbiota dysbiosis, maintained intestinal barrier function, increased short-chain fatty acids production and GPR43 expression, ameliorated endotoxemia, manifested by reduced serum lipopolysaccharide level, and increased ileum expression of tight junction proteins and antimicrobial peptides. Fecal microbiota transplantation study confirmed that BSGLP-induced microbiota change is responsible, at least in part, for obesity inhibition. Besides, BSGLP notably alleviated HFD-induced upregulation of TLR4/Myd88/NF-κB signaling pathway in adipose tissue. Collectively, our study showed for the first time that BSGLP might be used as a prebiotic agent to inhibit obesity and hyperlipidemia through modulating inflammation, gut microbiota, and gut barrier function.


Subject(s)
Ganoderma/drug effects , Gastrointestinal Microbiome , Inflammation/drug therapy , Obesity/drug therapy , Polysaccharides/chemistry , Animals , Body Weight , Computational Biology , Diet, High-Fat , Dysbiosis , Endotoxemia/metabolism , Feces/microbiology , Glucose Tolerance Test , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Inflammation/metabolism , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Powders , RNA, Ribosomal, 16S/metabolism , Spores, Fungal
15.
Cell Death Dis ; 10(6): 456, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186406

ABSTRACT

Targeting autophagy may serve as a promising strategy for cancer therapy. Ganoderma lucidum polysaccharide (GLP) has been shown to exert promising anti-cancer effects. However, the underlying mechanisms remain elusive. Whether GLP regulates autophagy in cancer has never been reported. In this study, GLP induced the initiation of autophagy in colorectal cancer (CRC) HT-29 and HCT116 cells, as evidenced by enhanced level of LC3-II protein, GFP-LC3 puncta, and increased formation of double membrane vacuoles. However, GLP treatment caused marked increase of p62 expression. Addition of late stage autophagy inhibitor, chloroquine (CQ), further enhanced LC3-II and p62 level, as well as increased autophagosome accumulation, suggesting a blockage of autophagic flux by GLP in CRC cells. We then found GLP blocked autophagosome and lysosome fusion as determined by mRFP-GFP-LC3 colocalization analysis. Mechanistic study revealed that GLP-induced disruption of autophagosome-lysosome fusion is due to reduced lysosome acidification and lysosomal cathepsin activities. Cell viability and flow cytometry assays revealed that GLP-induced autophagosome accumulation is responsible for GLP-induced apoptosis in CRC cells. In line with this, inhibition of autophagy initiation by 3-methyladenine (3-MA), an early stage autophagy inhibitor, attenuated GLP-induced apoptosis. In contrast, suppression of autophagy at late stage by CQ enhanced the anti-cancer effect of GLP. Furthermore, we demonstrated that GLP-induced autophagosome accumulation and apoptosis is mediated via MAPK/ERK activation. Finally, GLP inhibited tumor growth and also inhibited autophagic flux in vivo. These results unveil new molecular mechanism underlying anti-cancer effects of GLP, suggesting that GLP is a potent autophagy inhibitor and might be useful in anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Colorectal Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/metabolism , Polysaccharides/pharmacology , Reishi , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Autophagosomes/drug effects , Autophagosomes/ultrastructure , Cell Survival/drug effects , Chloroquine/pharmacology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , HCT116 Cells , HT29 Cells , Humans , Lysosomes/drug effects , Lysosomes/metabolism , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Nude , Microtubule-Associated Proteins/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/genetics , Polysaccharides/metabolism , Polysaccharides/therapeutic use , RNA-Binding Proteins/metabolism , Reishi/metabolism , Transplantation, Heterologous
16.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3235-3242, 2018 Aug.
Article in Chinese | MEDLINE | ID: mdl-30200724

ABSTRACT

Traditional Chinese medicine(TCM) has been increasingly used in the prevention and treatment of obesity and obesity-related diseases. However, its mechanism of action is not yet clear. In recent years, with the development of high-throughput sequencing technology, scientific researches have found that the disorder of gut microbiota is associated with obesity and other diseases. Furthermore, it has been found that TCM can improve the structure of gut microbiota by increasing probiotics and reducing pathogens, which play an importent role in preventing the development and progression of obesity and other diseases. This article first explores the possible association between intestinal microbiota and obesity. Then, it reviews the traditional Chinese medicine and its role in regulating intestinal microbiota for the prevention and treatment of diseases, including obesity and inflammation, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, inflammatory bowel disease and other diseases, in theexpectation of new strategies and research direction for treating obesity and relevant diseases, and providing important guidance for further studies in this field in the future.


Subject(s)
Gastrointestinal Microbiome , Medicine, Chinese Traditional , Obesity/therapy , Diabetes Mellitus, Type 2/therapy , Humans , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Insulin Resistance , Non-alcoholic Fatty Liver Disease/therapy
17.
Infect Drug Resist ; 11: 489-500, 2018.
Article in English | MEDLINE | ID: mdl-29670381

ABSTRACT

PURPOSE: The incidence and severity of Clostridium difficile infection (CDI) have markedly increased over the past decade. However, there is very limited epidemiological data on CDI in China so far, specifically no data in Shandong Province. The aim of this study was to evaluate diagnostic algorithm for CDI and to gain data on molecular epidemiology of CDI in the Shandong Province of China. MATERIALS AND METHODS: Nonrepetitive unformed fecal specimens (n=504) were investigated by the glutamate dehydrogenase (GDH), C. difficile toxin A&B (CDAB) tests and toxigenic culture. Furthermore, 85 isolates were characterized by toxin gene detection, multilocus sequence typing, ribotyping and antimicrobial susceptibility testing. RESULTS: The algorithm of combining GDH and CDAB tests could define diagnosis of 54.2% CDI cases and excluded 90% of non-CDI. Further adding the toxigenic culture to the algorithm enhanced the detection sensitivity to 100%. Toxigenic strains comprised 84.7% of isolates, including A+B+CDT- (71.8%, 61/85), A-B+CDT- (11.8%, 10/85) and A+B+CDT+ (1.2%, 1/85) isolates. RT046/ST35 (13.9%, 10/72), RT014/ST2 (12.5%, 9/72) and RT017/ST37 (12.5%, 9/72) were the more common genotypes among toxigenic C. difficile strains. The clinical severity score of A-B+CDT- toxin genes genotype (3.50±0.85) was significantly higher than the A+B+CDT- type (2.59±0.93) (P<0.05). RT046/ST35 isolates were highly prevalent and had high clinical severity scores (3.80±0.92). Variations in resistance from different sequence types (STs) were observed. Toxigenic strains showed higher resistance rates to erythromycin, clindamycin and ciprofloxacin compared to nontoxigenic strains (P<0.05). CONCLUSION: The epidemiology of C. difficile in Shandong Province differed from other regions in China. Comprehensive optimized diagnosis strategy and continuous surveillance should be established and applied in order to curb the spread of toxigenic C. difficile strains, especially for hospitalized patients.

18.
Int J Pharm ; 509(1-2): 296-304, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27251012

ABSTRACT

Centella Total Glucosides (CTG),obtained from Centella asiatica (L.), have been shown to possess a multitude of pharmacological activities, however, oral administeration of CTG failed to fulfill their therapeutic potentials due to the low bioavailability. In this study, the author prepared the liposomes encapsulated CTG using the ethanol injection method in order to enhance their intestinal absorption. The average particle size and the polydispersityindex(PDI) of CTG-loaded liposome in a batch are 137.0nm and 0.283, and the CTG-loaded amounts in CTG-loaded liposomes were 0.177mgmL(-1) and the zeta potential of CTG-loaded lipsomes is -21.2mV. The TEM images of CTG-loaded lipsomes showed that CTG-loaded liposomes are round and maintain high structural integrity, and their DSC thermograms indicated that CTG might be incorporated into the aqueous phase of DPPC to become more stable. The everted rat gut sac model was used to study the absorption characteristic of CTG-loaded solution in rat intestines. The cumulative absorption amount (Q) and the cumulative absorption percentage (P%) of asiaticoside in the CTG-loaded liposome was significantly higher than that in CTG (P<0.05), both the steady-state infiltration rate (Jss, µgcm(-2)s(-1)) and the permeability coefficient (Papp, cms(-1)) of asiaticoside in CTG-loaded liposomes were significantly higher than those in CTG (P<0.05), which revealed that the liposomes encapsulated CTG can promote the absorption of asiaticoside in the ileum of the rats by enhancing its transmembrane permeability. The above study will provide the experimental evidence and a reference for the development of the oral dosage forms of Centella total glucosides.


Subject(s)
Centella/chemistry , Glucosides/chemistry , Intestinal Absorption/drug effects , Liposomes/chemistry , Triterpenes/chemistry , Triterpenes/metabolism , Animals , Biological Availability , Intestinal Mucosa/metabolism , Male , Particle Size , Permeability , Plant Extracts , Rats , Rats, Wistar
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 28(3): 501-5, 2011 Jun.
Article in Chinese | MEDLINE | ID: mdl-21774211

ABSTRACT

64 eight-week-old female rats were randomly divided into to 8 groups with four in medical treatment group and four in control group. The treatment groups were trained by progressive intensifying endurance swimming, and the medical-taken groups were fed with lycium for 5 weeks, and then the changes of the liver cellular free radical metabolism and ultrastructure were investigated. The effects of lycium and endurance training on liver cellular ultrastructure and free radical metabolism in rats were then explored. The results showed that exhaustive swimming time of rats could be extended by endurance training, and that exhaustive swimming time of rats could significantly be prolonged after taking lycium, and the ultrastructure of liver cell with taking lycium was more complete than that without taking lyceum. Lycium could cause significant increase of the activity of liver superoxide dismutase (SOD) and the ratio of SOD/MDA, and meanwhile cause decrease of the content of liver MDA. Conclusions can be drawn that lycium and endurance training can improve exercise capacity of rats, and lycium has certain protecting functions of the liver.


Subject(s)
Antioxidants/metabolism , Drugs, Chinese Herbal/pharmacology , Liver/metabolism , Lycium/chemistry , Physical Endurance/physiology , Animals , Antioxidants/pharmacology , Female , Free Radicals/metabolism , Liver/ultrastructure , Malondialdehyde/metabolism , Random Allocation , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Swimming/physiology
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 15(4): 709-13, 2007 Aug.
Article in Chinese | MEDLINE | ID: mdl-17708788

ABSTRACT

To study the FLT3 gene expression and its internal tandem duplication in hematologic malignancies and its clinical significance, polymerase chain reaction (PCR) and DNA sequencing were used to detect the FLT3/ITD mutation in blast cells of bone marrow from 86 patients with hematologic malignancies, including 32 cases of acute myeoloid leukemia (AML), 18 cases of acute lymphoblastic leukemia (ALL), 2 cases of acute hybrid leukemia (AHL), 12 cases of myelodysplastic syndromes (MDS), 10 cases of chronic myelogenous leukemia (CML), 3 cases of non-Hodgkin's lymphoma (NHL) and 9 cases of multiple myeloma (MM). The resultes showed that the expression of FLT3/ITD gene could be detected in 5 of 32 (15.6%) AML patients, including 1/7 of M(3), 1/10 of M(4) and 3/10 of M(5). More FLT3 aberrations were found in AML-M(5). No FLT3/ITD was found in 18 cases of ALL, in 2 cases of AHL, in 12 cases of MDS and in 10 cases of CML. No FLT3 was found in 3 cases of NHL and in 9 cases of MM. Sequence analysis in 2 case with abnormal PCR electrophoretic patterns revealed that the ITDs were located within exon 14 from 27 to 63 bp, which was a simple tandem duplication, and did not altered the reading frame. FLT3/ITD was associated with a higher peripheral blood white cell count (p < 0.01), higher percentage of bone marrow blast cells (p < 0.01) and lower complete mission rate. It is concluded that more FLT3/ITD mutation occurs in AML-M(5) patients. Sequence of the mutants is in frame mutation. FLT3/ITD mutation is associated with higher peripheral blood white cell count, higher percentage of bone marrow blast cells and lower complete remission rate, FIT3/IID gene mutation may be used to predict prognosis of patients with AML.


Subject(s)
Gene Duplication , Hematologic Neoplasms/genetics , Mutation , Tandem Repeat Sequences , fms-Like Tyrosine Kinase 3/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Base Sequence , Child , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...