Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 882
Filter
1.
PLoS One ; 19(7): e0300643, 2024.
Article in English | MEDLINE | ID: mdl-38954725

ABSTRACT

As most teleosts are unable to synthesize vitamin C, supplemental diets containing vitamin C diets play a crucial role in fish health. The aim of this study was to investigate the effect of dietary vitamin C on the intestinal enzyme activity and intestinal microbiota of silver pomfre (Pampus argenteus). Four experimental diets were supplemented with basic diets containing 300 mg of vitamin C/kg (group tjl3), 600 mg of vitamin C/kg (group tjl6), and 1200 mg of vitamin C/kg (group tjl12), as well as vitamin C-free supplemental basic diet (group tjl0), respectively. The four diets were fed to juvenile P. argenteus (average initial weight: 4.68 ± 0.93 g) for 6 weeks. The results showed that the activity of SOD (superoxide dismutase) and CAT (catalase) increased significantly while that of MDA (malondialdehyde) decreased significantly in group tjl3 compared to vitamin group tjl0. At the genus level, groups tjl0, tjl6, and tjl12 contained the same dominant microbial community, Stenotrophomonas, Photobacterium, and Vibrio, whereas group tjl3 was dominated by Stenotrophomonas, Delftia, and Bacteroides. Among the fish fed with a basic diet containing 300 mg of vitamin C/kg, the intestines exhibited a notable abundance of probiotic bacteria, including lactic acid bacteria (Lactobacillus) and Bacillus. The abundance of Aeromonas in groups tjl3 and tjl6 was lower than that of the vitamin C-free supplemental basic diet group, whereas Aeromonas was not detected in group tjl12. In addition, a causative agent of the disease outbreak in cultured P. argenteus, Photobacterium damselae subsp. Damselae (PDD) was the dominant microbiota community in groups tjl0, tjl6 and tjl12, whereas the abundance of PDD in group tjl3 was the lowest among the diets. Taken together, the diets supplied with vitamin C could influence the composition microbial community of P. argenteus. The low level of vitamin C (300 mg of vitamin C/kg per basic diet) supplementation could not only improve the antioxidant capacity but also resist the invasion of pathogenic bacteria.


Subject(s)
Antioxidants , Ascorbic Acid , Dietary Supplements , Gastrointestinal Microbiome , Animals , Ascorbic Acid/pharmacology , Gastrointestinal Microbiome/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Perciformes/microbiology , Animal Feed/analysis , Superoxide Dismutase/metabolism , Bacteria/drug effects , Bacteria/isolation & purification , Diet/veterinary , Catalase/metabolism
2.
Research (Wash D C) ; 7: 0400, 2024.
Article in English | MEDLINE | ID: mdl-38939042

ABSTRACT

Short-chain fatty acids (SCFAs) have been increasingly evidenced to be important bioactive metabolites of the gut microbiota and transducers in controlling diverse psychiatric or neurological disorders via the microbiota-gut-brain axis. However, the precise mechanism by which brain SCFAs extert multiple beneficial effects is not completely understood. Our previous research has demonstrated that the acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is a novel target of the rapid and long-lasting antidepressant responses. Here, we show that micromolar SCFAs significantly augment both total cellular and nuclear ACSS2 to trigger tryptophan hydroxylase 2 (TPH2) promoter histone acetylation and its transcription in SH-SY5Y cells. In chronic-restraint-stress-induced depression mice, neuronal ACSS2 knockdown by stereotaxic injection of adeno-associated virus in the hippocampus abolished SCFA-mediated improvements in depressive-like behaviors of mice, supporting that ACSS2 is required for SCFA-mediated antidepressant responses. Mechanistically, the peroxisome-proliferator-activated receptor gamma (PPARγ) is identified as a novel partner of ACSS2 to activate TPH2 transcription. Importantly, PPARγ is also responsible for SCFA-mediated antidepressant-like effects via ACSS2-TPH2 axis. To further support brain SCFAs as a therapeutic target for antidepressant effects, d-mannose, which is a naturally present hexose, can significantly reverse the dysbiosis of gut microbiota in the chronic-restraint-stress-exposure mice and augment brain SCFAs to protect against the depressive-like behaviors via ACSS2-PPARγ-TPH2 axis. In summary, brain SCFAs can activate ACSS2-PPARγ-TPH2 axis to play the antidepressive-like effects, and d-mannose is suggested to be an inducer of brain SCFAs in resisting depression.

3.
Commun Biol ; 7(1): 756, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907105

ABSTRACT

Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.


Subject(s)
Liver Diseases, Alcoholic , Mechanistic Target of Rapamycin Complex 1 , Ras Homolog Enriched in Brain Protein , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Humans , Animals , Mice , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/genetics , Interleukin-1/metabolism , Interleukin-1/genetics , Mice, Inbred C57BL , Male , HEK293 Cells
4.
Front Pharmacol ; 15: 1380098, 2024.
Article in English | MEDLINE | ID: mdl-38881875

ABSTRACT

Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.

5.
Heliyon ; 10(11): e31667, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882385

ABSTRACT

Objective: Bisphenol A (BPA) is a common environmental endocrine disruptor that negatively impairs male reproductive ability. This study aimed to explore the alterations in serum metabolomics that occur following BPA exposure and the mechanism via which BPA induces the death of testicular cells in a male mouse model. Methods: The mice were classified into two groups: BPA-exposed and control groups, and samples were collected for metabolomic determination, semen quality analysis, electron microscopy, enzyme-linked immunosorbent assay, quantitative real-time PCR, pathological staining, and Western blot analysis. Results: BPA exposure caused testicular damage and significantly decreased sperm quality in mice. Combined with non-target metabolomic analysis, this was closely related to ferroptosis induced by abnormal metabolites of arachidonic acid and phosphatidylcholine, and the expression of its related genes, acyl CoA synthetase 4, glutathione peroxidase 4, lysophosphatidylcholine acyltransferase 3, and phosphatidylethanolamine-binding protein 1 were altered. Conclusion: BPA induced ferroptosis, caused testicular damage, and reduced fertility by affecting lipid metabolism in male mice. Inhibiting ferroptosis may potentially function as a therapeutic strategy to mitigate the male reproductive toxicity induced by BPA.

6.
Anal Chem ; 96(27): 10911-10919, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38916969

ABSTRACT

The integration of electrochemistry with nuclear magnetic resonance (NMR) spectroscopy recently offers a powerful approach to understanding oxidative metabolism, detecting reactive intermediates, and predicting biological activities. This combination is particularly effective as electrochemical methods provide excellent mimics of metabolic processes, while NMR spectroscopy offers precise chemical analysis. NMR is already widely utilized in the quality control of pharmaceuticals, foods, and additives and in metabolomic studies. However, the introduction of additional and external connections into the magnet has posed challenges, leading to signal deterioration and limitations in routine measurements. Herein, we report an anti-interference compact in situ electrochemical NMR system (AICISENS). Through a wireless strategy, the compact design allows for the independent and stable operation of electrochemical NMR components with effective interference isolation. Thus, it opens an avenue toward easy integration into in situ platforms, applicable not only to laboratory settings but also to fieldwork. The operability, reliability, and versatility were validated with a series of biomimetic assessments, including measurements of microbial electrochemical systems, functional foods, and simulated drug metabolisms. The robust performance of AICISENS demonstrates its high potential as a powerful analytical tool across diverse applications.


Subject(s)
Electrochemical Techniques , Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Wireless Technology
7.
Microbiome ; 12(1): 86, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730492

ABSTRACT

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Subject(s)
Cell Differentiation , Clostridiales , Gastrointestinal Microbiome , T-Lymphocytes, Regulatory , Trichuris , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Malaysia , Clostridiales/isolation & purification , Humans , Fatty Acids, Volatile/metabolism , Female , Trichuriasis/parasitology , Trichuriasis/immunology , Trichuriasis/microbiology
8.
Int Orthop ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691141

ABSTRACT

BACKGROUND: Patients with dysplasia of the hip (DDH) have different degrees of bone defects above and outside the acetabulum, and anatomically reconstructing the acetabular centre of rotation is difficult in primary total hip arthroplasty (THA). METHODS: From April 2012 to December 2022, 64 patients (64 hips) with DDH treated with THA with structural bone graft in the superolateral acetabulum were selected. The Oxford hip score(OHS), Barthel index (BI), leg length discrepancy, Wibegr central edge-angle(CE), gluteus medius muscle strength, vertical and horizontal distance of the hip rotation center, coverage rate of the bone graft and complications were used to evaluate the clinical effectiveness of the patients. RESULTS: All patients were followed up for an average of 7.3±1.9 years. The OHS improved significantly after the operation (P<0.001). The postoperative BI was significantly greater than that before operation (P<0.001). The postoperative leg length discrepancy was significantly lower than that before the operation (P<0.001). Postoperative bedside photography revealed that the height and horizontal distance to the hip rotation center were significantly lower after surgery than before surgery (P<0.001). The postoperative CE was significantly greater than that before surgery (P<0.001). No acetabular component loosening or bone graft resorption was found during the postoperative imaging examination. CONCLUSIONS: The use of biological acetabular cup combined with structural bone graft in the superolateral acetabulum in THA for DDH can obtain satisfactory medium and long-term clinical and radiological results.

9.
Natl Sci Rev ; 11(5): nwae085, 2024 May.
Article in English | MEDLINE | ID: mdl-38577670

ABSTRACT

Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.

10.
Expert Rev Vaccines ; 23(1): 523-534, 2024.
Article in English | MEDLINE | ID: mdl-38682812

ABSTRACT

BACKGROUND: Traditional vaccine development, often a lengthy and costly process of three separated phases. However, the swift development of COVID-19 vaccines highlighted the critical importance of accelerating the approval of vaccines. This article showcases a seamless phase 2/3 trial design to expedite the development process, particularly for multi-valent vaccines. RESEARCH DESIGN AND METHODS: This study utilizes simulation to compare the performance of seamless phase 2/3 design with that of conventional trial design, specifically by re-envisioning a 9-valent HPV vaccine trial. Across three cases, several key performance metrics are evaluated: overall power, type I error rate, average sample size, trial duration, the percentage of early stop, and the accuracy of dose selection. RESULTS: On average, when the experimental vaccine was assumed to be effective, the seamless design that performed interim analyses based solely on efficacy saved 555.73 subjects, shortened trials by 10.29 months, and increased power by 3.70%. When the experimental vaccine was less effective than control, it saved an average of 887.73 subjects while maintaining the type I error rate below 0.025. CONCLUSION: The seamless design proves to be a compelling strategy for vaccine development, given its versatility in early stopping, re-estimating sample sizes, and shortening trial durations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Research Design , Vaccine Development , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Vaccine Development/methods , Sample Size , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , Computer Simulation
11.
Chin Med Sci J ; 39(1): 19-28, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623048

ABSTRACT

Objective As primary Sj?gren's syndrome (pSS) primarily affects the salivary glands, saliva can serve as an indicator of the glands' pathophysiology and the disease's status. This study aims to illustrate the salivary proteomic profiles of pSS patients and identify potential candidate biomarkers for diagnosis.Methods The discovery set contained 49 samples (24 from pSS and 25 from age- and gender-matched healthy controls [HCs]) and the validation set included 25 samples (12 from pSS and 13 from HCs). Totally 36 pSS patients and 38 HCs were centrally randomized into the discovery set or to the validation set at a 2:1 ratio. Unstimulated whole saliva samples from pSS patients and HCs were analyzed using a data-independent acquisition (DIA) strategy on a 2D LC?HRMS/MS platform to reveal differential proteins. The crucial proteins were verified using DIA analysis and annotated using gene ontology (GO) and International Pharmaceutical Abstracts (IPA) analysis. A prediction model for SS was established using random forests.Results A total of 1,963 proteins were discovered, and 136 proteins exhibited differential representation in pSS patients. The bioinformatic research indicated that these proteins were primarily linked to immunological functions, metabolism, and inflammation. A panel of 19 protein biomarkers was identified by ranking order based on P-value and random forest algorichm, and was validated as the predictive biomarkers exhibiting good performance with area under the curve (AUC) of 0.817 for discovery set and 0.882 for validation set.Conclusions The candidate protein panel discovered may aid in pSS diagnosis. Salivary proteomic analysis is a promising non-invasive method for prognostic evaluation and early and precise treatments for pSS patients. DIA offers the best time efficiency and data dependability and may be a suitable option for future research on the salivary proteome.


Subject(s)
Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/metabolism , Proteomics/methods , Biomarkers/metabolism , Saliva/metabolism , Prognosis
12.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612520

ABSTRACT

Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.


Subject(s)
Arabidopsis , Genes, myb , Transcription Factors/genetics , Phylogeny , Secondary Metabolism , Arabidopsis/genetics , Flavonoids
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 827-836, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646771

ABSTRACT

The proportion and area of ratoon rice planting in China have been substantially increased, due to continuous improvement of rice breeding methods and consecutive innovation of cultivation technology, which has developed into one of rice planting modes with significant production efficiency. Combining the experience in research and practice, from the perspective of crop physiology and ecology, we reviewed the current situation and prospects of high-yielding formation and physiological mechanisms of ratoon rice. We focused on four key aspects: screening and breeding of ratoon rice cultivars and the classification; suitable stubble height for mechanically harvested ratoon rice, as well as water and fertilizer management; dry matter production and allocation in ratoon rice and the relationship with yield formation; regenerative activity and vigor of ratoon rice roots and their relationship with rhizosphere micro-ecological characteristics. As for the extending of mechanized low-cut stubbles ratoon rice technique, we should properly regulate the rhizosphere system, coordinate rhizosphere nutrient supply, germination of axillary buds, and tillering regeneration, to achieve the target of "four-high-one-low", that is high regeneration coefficient, high number of regeneration panicle, high harvest index, high yield, high quality, low-carbon and safe, aiming to improve the sustainability of ratoon rice industry.


Subject(s)
Oryza , Oryza/growth & development , China , Crop Production/methods , Rhizosphere , Plant Breeding , Agriculture/methods , Fertilizers , Plant Roots/growth & development
14.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657606

ABSTRACT

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Subject(s)
Amino Acids, Branched-Chain , Amino Acids , Gastrointestinal Microbiome , Homeostasis , Tryptophan , Animals , Gastrointestinal Microbiome/physiology , Mice , Amino Acids/metabolism , Amino Acids, Branched-Chain/metabolism , Tryptophan/metabolism , Mice, Inbred C57BL , Nutrients/metabolism , Intestines/microbiology , Humans , Metabolomics , Glucose/metabolism , Serotonin/metabolism , Germ-Free Life , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Male
15.
Antiviral Res ; 227: 105890, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657838

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.


Subject(s)
Antiviral Agents , Dibenzothiepins , Morpholines , Pyridines , Pyridones , Triazines , Virus Replication , Animals , Morpholines/pharmacology , Morpholines/pharmacokinetics , Morpholines/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Dibenzothiepins/pharmacology , Dibenzothiepins/pharmacokinetics , Mice , Pyridines/pharmacology , Pyridines/pharmacokinetics , Pyridines/chemistry , Virus Replication/drug effects , Triazines/pharmacology , Triazines/pharmacokinetics , Triazines/chemistry , Triazines/therapeutic use , Pyridones/pharmacology , Pyridones/pharmacokinetics , Pyridones/chemistry , Thiepins/pharmacology , Thiepins/therapeutic use , Thiepins/pharmacokinetics , Thiepins/chemistry , Viral Load/drug effects , Chlorocebus aethiops , Vero Cells , Female , Oxazines/pharmacology , Oxazines/pharmacokinetics , Oxazines/therapeutic use , Mice, Inbred BALB C , Humans , Thiazoles/pharmacology , Thiazoles/pharmacokinetics , Thiazoles/chemistry
16.
Bioresour Technol ; 401: 130746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679240

ABSTRACT

Nanotechnology and biotechnology offer promising avenues for bolstering food security through the facilitation of soil nitrogen (N) sequestration and the reduction of nitrate leaching. Nonetheless, a comprehensive and mechanistic evaluation of their effectiveness and safety remains unclear. In this study, a soil remediation strategy employing nano-Fe3O4 and straw in N-contaminated soil was developed to elucidate N retention mechanisms via diverse metagenomics techniques. The findings revealed that subsoil amended with straw, particularly in conjunction with nano-Fe3O4, significantly increased subsoil N content (53.2%) and decreased nitrate concentration (74.6%) in leachate. Furthermore, the enrichment of functional genes associated with N-cycling, sulfate, nitrate, and iron uptake, along with chemotaxis, and responses to environmental stimuli or microbial collaboration, effectively mitigates nitrate leaching while enhancing soil N sequestration. This study introduces a pioneering approach utilizing nanomaterials in soil remediation, thereby offering the potential for the cultivation of safe vegetables in high N input greenhouse agriculture.


Subject(s)
Agriculture , Denitrification , Nitrogen , Soil , Agriculture/methods , Soil/chemistry , Nitrates , Soil Microbiology , Soil Pollutants/metabolism
17.
IEEE Trans Image Process ; 33: 2388-2403, 2024.
Article in English | MEDLINE | ID: mdl-38517716

ABSTRACT

This paper investigates a novel unpaired video dehazing framework, which can be a good candidate in practice by relieving pressure from collecting paired data. In such a paradigm, two key issues including 1) temporal consistency uninvolved in single image dehazing, and 2) better dehazing ability need to be considered for satisfied performance. To handle the mentioned problems, we alternatively resort to introducing depth information to construct additional regularization and supervision. Specifically, we attempt to synthesize realistic motions with depth information to improve the effectiveness and applicability of traditional temporal losses, and thus better regularizing the spatiotemporal consistency. Moreover, the depth information is also considered in terms of adversarial learning. For haze removal, the depth information guides the local discriminator to focus on regions where haze residuals are more likely to exist. The dehazing performance is consequently improved by more pertinent guidance from our depth-aware local discriminator. Extensive experiments are conducted to validate our effectiveness and superiority over other competitors. To the best of our knowledge, this study is the initial foray into the task of unpaired video dehazing. Our code is available at https://github.com/YaN9-Y/DUVD.

18.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38506708

ABSTRACT

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Subject(s)
Immunity, Innate , Inflammatory Bowel Diseases , Humans , Animals , Mice , Interleukin-33 , Inulin , Lymphocytes , Dietary Fiber , Bile Acids and Salts , Inflammation
19.
Pharmacol Res ; 202: 107136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460778

ABSTRACT

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Subject(s)
Arabinose , PPAR gamma , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Arabinose/pharmacology , Arabinose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism
20.
Drug Des Devel Ther ; 18: 699-717, 2024.
Article in English | MEDLINE | ID: mdl-38465266

ABSTRACT

Background: Annao Pingchong decoction (ANPCD) is a traditional Chinese decoction which has definite effects on treating intracerebral hemorrhage (ICH) validated through clinical and experimental studies. However, the impact of ANPCD on oxidative stress (OS) after ICH remains unclear and is worth further investigating. Aim: To investigate whether the therapeutic effects of ANPCD on ICH are related to alleviating OS damage and seek potential targets for its antioxidant effects. Materials and Methods: The therapeutic candidate genes of ANPCD on ICH were identified through a comparison of the target genes of ANPCD, target genes of ICH and differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis and functional enrichment analysis were combined with targets-related literature to select suitable antioxidant targets. The affinity between ANPCD and the selected target was verified using macromolecular docking. Subsequently, the effects of ANPCD on OS and the selected target were further investigated through in vivo experiments. Results: Forty-eight candidate genes were screened, in which silent information regulator sirtuin 1 (SIRT1) is one of the core genes that has antioxidant effects and ICH significantly affected its expression. The good affinity between 6 compounds of ANPCD and SIRT1 was also demonstrated by macromolecular docking. The results of in vivo experiments demonstrated that ANPCD significantly decreased modified neurological severity scoring (mNSS) scores and serum MDA and 8-OHdG content in ICH rats, while significantly increasing serum SOD and CAT activity, complicated with the up-regulation of ANPCD on SIRT1, FOXO1, PGC-1α and Nrf2. Furthermore, ANPCD significantly decreased the apoptosis rate and the expression of apoptosis-related proteins (P53, cytochrome c and caspase-3). Conclusion: ANPCD alleviates OS damage and apoptosis after ICH in rats. As a potential therapeutic target, SIRT1 can be effectively regulated by ANPCD, as are its downstream proteins.


Subject(s)
Antioxidants , Sirtuin 1 , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats, Sprague-Dawley , Network Pharmacology , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Apoptosis Regulatory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL