Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Environ Sci Technol ; 58(37): 16535-16546, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39215709

ABSTRACT

Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.


Subject(s)
Photolysis , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Microplastics/chemistry , Spectrum Analysis, Raman
2.
Sci Total Environ ; 948: 174957, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053538

ABSTRACT

Sediment cores were collected along a trophic gradient in Green Bay, a seasonally hypoxia-influenced freshwater estuary in Lake Michigan, to measure various phosphorus (P) species, including exchangeable-P (Ex-P), iron-bound-P (Fe-P), biogenic-apatite and/or CaCO3-associated-P (CFA-P), organic-P (Org-P) and detrital-apatite-P (Detr-P). Although total phosphorus (TP) decreased with increasing depth, different P species exhibited distinct vertical distribution patterns with different post-depositional behaviors. The Ex-P, Fe-P and CFA-P species were identified as potentially bioavailable-P (BAP). Little variation was observed for Org-P and Detr-P species, especially below the upper-active-layer, both serving as the primary sink for P in sediment. Detr-P% decreased consistently from the near river plume station to the open bay in the north. P accumulation rates were estimated at 25.1 mmol-P/m2/yr (779 mg-P/m2/yr) in the south, 10.9 mmol-P/m2/yr (338 mg-P/m2/yr) in the central region, and 8.1 mmol-P/m2/yr (252 mg-P/m2/yr) in the north of Green Bay, showing a decrease in the depth of the upper active layer for P regeneration along the south-north transect. The overall potential P regeneration back into the water column increased from 2.8 mmol-P/m2/yr (87 mg-P/m2/yr) in the south, and 3.3 mmol-P/m2/yr (101 mg-P/m2/yr) in the central region to 5.6 mmol-P/m2/yr (173 mg-P/m2/yr) in the north of the bay, corresponding to P burial efficiencies of ∼89 %, 70 % and 31 % along the trophic gradient. The recent decrease in Detr-P and thus the increase in BAP over the last 2-3 decades could be related to anthropogenic activities, such as damming and implementation of agricultural conservation practices. Conversely, a recent increase in TOC/TOP ratios may reflect the increased extent of trophic status and seasonal hypoxia in bottom waters and enhanced regeneration and recycling of particulate P in Green Bay since the 1960s. New results from this study provide an improved understanding of the linkage between sources, internal cycling, and long-term burial of P in the basin.

3.
Sci Total Environ ; 946: 174245, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38925395

ABSTRACT

Dissolved organic matter (DOM) plays an important role in governing metal speciation and migration in aquatic systems. In this study, various DOM samples were collected from Lakes Erhai, Kokonor, and Chaka, and size-fractionated into high molecular weight (HMW, 1 kDa-0.7 µm) and low molecular weight (LMW, <1 kDa) fractions for measurements of dissolved organic carbon (DOC), spectral properties, and metal binding behaviors. Our results demonstrated that samples from Lake Chaka exhibited the highest DOC concentration and fluorescence indices but the lowest percentage of carbohydrates. Regardless of sampling locations, the HMW-DOM fractions contained higher abundances of aromatic DOM, carbohydrates and protein-like substances, but lower abundance of fulvic acid-like substances compared to those in the LMW fractions. Metal titration experiments coupled with the excitation-emission matrix (EEM)-parallel factor (PARAFAC) modeling revealed that the quenching of the PARAFAC-derived fluorescent components was more pronounced in the presence of Cu(II) compared to Pb(II). Humic-like components emerged as a superior model, exhibiting higher binding affinities for Cu(II) than protein-like substances, while the opposite trend was observed for Pb(II). In samples obtained from Lakes Erhai and Kokonor, the condition stability constants (Log KM) for the binding of both Cu(II) and Pb(II) with the HMW-DOM fraction were higher than those with the LMW-DOM fraction. Conversely, a contrasting trend was observed for Lake Chaka. This study highlighted the heterogeneity in spectral properties and metal-binding behaviors of natural DOMs, contributing to an improved understanding of the molecular interactions between DOM components and metal ions and their environmental fate in aquatic ecosystems.

4.
Sci Total Environ ; 945: 173861, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38871323

ABSTRACT

Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %-76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %-81 %) and N (52 %-82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %-64 %) and N pool (8.6 %-59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.

5.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436125

ABSTRACT

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Subject(s)
Oryza , Soil , Carbon , China , Geography
6.
Sci Total Environ ; 921: 170928, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38367716

ABSTRACT

The fate of dissolved organic matter (DOM) is primarily governed by its sources, degradation, and transformation processes within the environment. However, the influence of metal-DOM complexation on DOM degradation remains ambiguous. In this study, controlled laboratory experiments were conducted using Cu(II) and natural water from the Duliujian River and the Beidagang Wetland to examine the effects of metal-DOM binding on the degradation pathway of DOM. Our results showed that Cu(II)-DOM complexation affected the distribution of DOM molecular weight with elevated Mw after complexed with Cu(II). Nevertheless, the concentration of DOM decreased over the incubation period due to degradation. In the absence of Cu(II) binding, both wetland and river DOM followed similar degradation pathways, transforming from high to low molecular weight with changes predominantly in the 1-10 kDa size-fraction during DOM degradation. In contrast, in the presence of Cu(II) and thus Cu(II)-DOM binding, the degradation of DOM was enhanced, resulting in higher kinetic rate constants for both wetland and river DOM. The results of differential spectra further confirmed the degradation of DOM with a decrease in bulk spectroscopic properties and an increase in the degree of DOM-Cu(II) complexation. These findings imply a mutually reinforcing relationship between metal-DOM complexation and the degradation of DOM in aquatic environments, providing new insights into the biogeochemical behavior and environmental fate of DOM.

7.
Sci Total Environ ; 902: 165891, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544441

ABSTRACT

Variations in molecular weight distributions of dissolved organic matter (DOM) and PARAFAC-derived fluorescent components were investigated along a transect in the seasonally hypereutrophic lower Fox River-Green Bay using the one-sample PARAFAC approach coupling flow field-flow fractionation for size-separation with fluorescence excitation-emission matrix (EEM) and PARAFAC analysis. Concentrations of dissolved organic carbon and nitrogen, chromophoric-DOM, specific UV absorbance at 254 nm, and humification index all decreased monotonically from river to open bay, showing a strong river-dominated DOM source and a dynamic change in DOM quality along the river-lake transect. The relative abundance of colloidal DOM (>1 kDa) derived from ultrafiltration exhibited minimal variation, averaging 71 ± 4 % of the bulk DOM, across the entire estuarine transect although the colloidal concentration decreased in general. Using the one-sample EEM-PARAFAC approach, the identified major fluorescent components were distinct between stations along the river-estuary-open bay continuum, with four components in river/upper-estuary but three components in open bay waters. Among the four common fluorescent components (C475, C410, C320 and C290), the most abundant and refractory humic-like component, C475, behaved conservatively and its relative abundance (%ΣFmax) remained fairly constant (50 ± 4 %) along the transect, while the semi-labile humic-like component, C410, consistently decreased from river to estuary and eventually vanished in open Green Bay. In contrast, the two autochthonous protein-like components (C320 and C290) increased from river to open bay along the trophic gradient. The new results presented here provide an improved understanding of the diverse and fluctuating characteristics in DOM composition, lability, and estuarine mixing behavior across the river-lake interface and demonstrate the efficacy of the one-sample PARAFAC approach.

8.
Sci Total Environ ; 876: 162414, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36868275

ABSTRACT

The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics/toxicity , Water Pollutants, Chemical/analysis , Wastewater , Fishes , Aquatic Organisms
9.
Environ Sci Pollut Res Int ; 30(20): 57638-57652, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36971940

ABSTRACT

Humic acid (HA) and reference natural organic matter (NOM) have been widely used in environmental assessment, biogeochemistry, and ecotoxicity studies. Nevertheless, similarities and differences among the commonly used model/reference NOMs and bulk dissolved organic matter (DOM) have rarely been systematically evaluated. In this study, HA, SNOM (Suwannee River NOM) and MNOM (Mississippi River NOM), both from International Humic Substances Society, and freshly collected unfractionated NOM (FNOM) were concurrently characterized to evaluate their heterogeneous nature and size-dependent chemical properties. We found that molecular weight distributions, PARAFAC-derived fluorescent components, and size-dependent optical properties are NOM-specific and highly variable with pH. The < 1 kDa DOM abundance followed the order of HA < SNOM < MNOM < FNOM. In addition, FNOM was more hydrophilic and contained more protein-like and autochthonous components with a higher UV-absorbance ratio index (URI) and biological fluorescence index, whereas HA and SNOM contained more allochthonous, humic-like components with a higher aromaticity and lower URI. Significant differences in molecular composition and size spectra between FNOM and model/reference NOMs suggest that environmental role of NOMs should be evaluated at the levels of molecular weight and functionalities under the same experimental conditions and that HA and SNOM may not represent bulk NOM in the environment. This study provides new information about similarities and differences in DOM size-spectra and chemical properties between reference NOMs and in-situ NOM and highlights the need to better understand the heterogenous roles of NOMs in regulating the toxicity/bioavailability and environmental fate of pollutants in aquatic environments.


Subject(s)
Dissolved Organic Matter , Environmental Pollutants , Molecular Weight , Humic Substances/analysis , Rivers/chemistry , Spectrometry, Fluorescence
10.
Sci Total Environ ; 873: 162246, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796690

ABSTRACT

The complexation of metals with dissolved organic matter (DOM) under different compositions and molecular weights (MWs) will result in different environmental fate and toxicity, but the specific role and impact of DOM MWs remain less well understood. This study explored the metal binding characteristics by DOM with different MWs from different sources, including sea, river, and wetland waters. The results of fluorescence characterization showed that the >1 kDa high-molecular-weight (HMW)-DOM were mainly from terrestrial sources while the low-molecular-weight (LMW)-DOM fractions were mostly from microbial sources. Based on UV-Vis spectroscopic characterization, the LMW-DOM contained more unsaturated bonds than its HMW counterpart, and the substituents are generally dominated by polar functional groups. Summer DOM had more unsaturated bonds and a higher metal binding capacity than winter DOM. Furthermore, DOM with different MWs had significantly different Cu binding properties. In addition, Cu binding with microbially derived LMW-DOM mainly caused the change in the peak at 280 nm, while binding with terrigenous HMW-DOM resulted in the change of the 210 nm peak. Compared with the HMW-DOM, most of the LMW-DOM had stronger Cu-binding ability. Correlation analysis indicates that metal binding ability of DOM mainly depends on its concentration, number of unsaturated bonds and benzene rings, and types of substituents during interactions. This work provides an improved understanding of the metal-DOM binding mechanism, the role of composition- and MW-dependent DOM from different sources, and thus the transformation and environmental/ecological role of metals in aquatic systems.

SELECTION OF CITATIONS
SEARCH DETAIL