Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
ChemMedChem ; 7(12): 2204-26, 2012 Dec.
Article En | MEDLINE | ID: mdl-23112085

Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.


Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Interactions , Chloroquine/pharmacology , Ferric Compounds/metabolism , Flavin-Adenine Dinucleotide/metabolism , Humans , Malaria/drug therapy , Methylene Blue/pharmacology , NAD/analogs & derivatives , NAD/metabolism , NADP/metabolism , Oxidative Stress/drug effects , Quinolines/metabolism , Riboflavin/metabolism
2.
ChemMedChem ; 6(9): 1603-15, 2011 Sep 05.
Article En | MEDLINE | ID: mdl-21994127

Artemisinins rapidly oxidize leucomethylene blue (LMB) to methylene blue (MB); they also oxidize dihydroflavins such as the reduced conjugates RFH2 of riboflavin (RF), and FADH2 of the cofactor flavin adenine dinucleotide (FAD), to the corresponding flavins. Like the artemisinins, MB oxidizes FADH2, but unlike artemisinins, it also oxidizes NAD(P)H. Like MB, artemisinins are implicated in the perturbation of redox balance in the malaria parasite by interfering with parasite flavoenzyme disulfide reductases. The oxidation of LMB by artemisinin is inhibited by chloroquine (CQ), an inhibition that is abruptly reversed by verapamil (VP). CQ also inhibits artemisinin-mediated oxidation of RFH2 generated from N-benzyl-1,4-dihydronicotinamide (BNAH)-RF, or FADH2 generated from NADPH or NADPH-Fre, an effect that is also modulated by verapamil. The inhibition likely proceeds by the association of LMB or dihydroflavin with CQ, possibly involving donor-acceptor or π complexes that hinder oxidation by artemisinin. VP competitively associates with CQ, liberating LMB or dihydroflavin from their respective CQ complexes. The observations explain the antagonism between CQ-MB and CQ-artemisinins in vitro, and are reconcilable with CQ perturbing intraparasitic redox homeostasis. They further suggest that a VP-CQ complex is a means by which VP reverses CQ resistance, wherein such a complex is not accessible to the putative CQ-resistance transporter (PfCRT).


Antimalarials/pharmacology , Artemisinins/pharmacology , Chloroquine/antagonists & inhibitors , Malaria/drug therapy , Methylene Blue/pharmacology , Verapamil/pharmacology , Animals , Antimalarials/chemistry , Artemisinins/chemistry , Chloroquine/chemistry , Chloroquine/pharmacology , Drug Resistance , Drug Synergism , Flavin-Adenine Dinucleotide/metabolism , Homeostasis/drug effects , Humans , Malaria/metabolism , Malaria/pathology , Methylene Blue/chemistry , Oxidation-Reduction/drug effects , Verapamil/chemistry
3.
Biochemistry ; 50(26): 5893-904, 2011 Jul 05.
Article En | MEDLINE | ID: mdl-21627110

1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.


Aspartic Acid , Conserved Sequence , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/metabolism , Oxygen/metabolism , Spectrum Analysis , Vitamin K 2/metabolism , Absorption , Bacteria/enzymology , Catalytic Domain , Coenzyme A/chemistry , Coenzyme A/metabolism , Coenzyme A/pharmacology , Enzyme Stability , Hydrogen Bonding , Models, Molecular , Mutagenesis, Site-Directed , Oxo-Acid-Lyases/antagonists & inhibitors , Oxo-Acid-Lyases/genetics , Oxygen/chemistry , Phenols/chemistry , Phenols/metabolism , Protons
4.
ChemMedChem ; 6(2): 279-91, 2011 Feb 07.
Article En | MEDLINE | ID: mdl-21275052

Flavin adenine dinucleotide (FAD) is reduced by NADPH-E. coli flavin reductase (Fre) to FADH(2) in aqueous buffer at pH 7.4 under argon. Under the same conditions, FADH(2) in turn cleanly reduces the antimalarial drug methylene blue (MB) to leucomethylene blue. The latter is rapidly re-oxidized by artemisinins, thus supporting the proposal that MB exerts its antimalarial activity, and synergizes the antimalarial action of artemisinins, by interfering with redox cycling involving NADPH reduction of flavin cofactors in parasite flavin disulfide reductases. Direct treatment of the FADH(2) generated from NADPH-Fre-FAD by artemisinins and antimalaria-active tetraoxane and trioxolane structural analogues under physiological conditions at pH 7.4 results in rapid reduction of the artemisinins, and efficient conversion of the peroxide structural analogues into ketone products. Comparison of the relative rates of FADH(2) oxidation indicate optimal activity for the trioxolane. Therefore, the rate of intraparastic redox perturbation will be greatest for the trioxolane, and this may be significant in relation to its enhanced in vitro antimalarial activities. (1)H NMR spectroscopic studies using the BNAH-riboflavin (RF) model system indicate that the tetraoxane is capable of using both peroxide units in oxidizing the RFH(2) generated in situ. Use of the NADPH-Fre-FAD catalytic system in the presence of artemisinin or tetraoxane confirms that the latter, in contrast to artemisinin, consumes two reducing equivalents of NADPH. None of the processes described herein requires the presence of ferrous iron. Ferric iron, given its propensity to oxidize reduced flavin cofactors, may play a role in enhancing oxidative stress within the malaria parasite, without requiring interaction with artemisinins or peroxide analogues. The NADPH-Fre-FAD system serves as a convenient mimic of flavin disulfide reductases that maintain redox homeostasis in the malaria parasite.


Antimalarials/chemistry , FMN Reductase/metabolism , Flavins/chemistry , Methylene Blue/analogs & derivatives , Models, Theoretical , Peroxides/chemistry , Methylene Blue/chemistry
6.
J Biol Chem ; 285(39): 30159-69, 2010 Sep 24.
Article En | MEDLINE | ID: mdl-20643650

1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.


Bicarbonates/chemistry , Coenzymes/chemistry , Escherichia coli/enzymology , Oxo-Acid-Lyases/chemistry , Vitamin K 2/chemistry , Bicarbonates/metabolism , Binding Sites , Catalysis , Coenzymes/metabolism , Escherichia coli/genetics , Evolution, Molecular , Kinetics , Mutagenesis, Site-Directed , Oxo-Acid-Lyases/classification , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Structural Homology, Protein , Vitamin K 2/metabolism
7.
Bioorg Med Chem Lett ; 20(13): 3855-8, 2010 Jul 01.
Article En | MEDLINE | ID: mdl-20627563

Significant conformational change is detected by circular dichroism and fluorimetry for the major component of the enterobactin synthetase in crowded solutions mimicking the intracellular environment. The structural change correlates well with the extent of the crowding-induced side product suppression in nonribosomal enterobactin synthesis. In contrast, protein-stabilizing solvophobic agents such as glycerol have no effect on the formation of side products, excluding crowding-induced protein stability as a cause for the observed enhancement of the product specificity of the synthetase. These results strongly support that macromolecular crowding is an indispensable physiological factor for normal functioning of the nonribosomal enterobactin synthetase by altering the active sites to increase its product specificity.


Enterobactin/biosynthesis , Ligases/chemistry , Ligases/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Circular Dichroism , Escherichia coli/enzymology , Fluorometry , Molecular Conformation , Solutions
8.
J Am Chem Soc ; 131(38): 13576-7, 2009 Sep 30.
Article En | MEDLINE | ID: mdl-19731909

By covalently connecting taxol with a motif that is prone to self-assemble, we successfully generate the precursor (5a), the hydrogelator (5b), and hydrogel of a taxol derivative without compromising the cytotoxic activity of the taxol. This approach promises a general method to create nanofibers of therapeutic molecules that have a dual role, as both the delivery vehicle and the drug itself.


Alkaline Phosphatase/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Nanostructures/chemistry , Paclitaxel/chemistry , Tubulin Modulators/chemistry , HeLa Cells , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry
9.
Biochemistry ; 48(8): 1712-22, 2009 Mar 03.
Article En | MEDLINE | ID: mdl-19193103

The type II thioesterase EntH is a hotdog fold protein required for optimal nonribosomal biosynthesis of enterobactin in Escherichia coli. Its proposed proofreading activity in the biosynthesis is confirmed by its efficient restoration of enterobactin synthesis blocked in vitro by analogs of the cognate precursor 2,3-dihydroxybenzoate. Steady-state kinetic studies show that EntH recognizes the phosphopantetheine group and the pattern of hydroxylation in the aryl moiety of its thioester substrates. Remarkably, it is able to distinguish aberrant intermediates from the normal one in the enterobactin assembly line by demonstrating at least 10-fold higher catalytic efficiency toward thioesters derived from aberrant aryl precursors without a para-hydroxyl group, such as salicylate. By structural comparison and site-directed mutagenesis, the thioesterase is found to possess an active site closely resembling that of the 4-hydroxybenzoyl-CoA thioesterase from Arthrobacter sp. strain SU and to involve an acidic residue (glutamate-63) as the catalytic base or nucleophile like all other hotdog thioesterases. In addition, the EntH specificities toward the substrate hydroxylation pattern are found to depend on the active-site histidine-54, threonine-64, serine-67, and methionine-68 with the selectivity significantly reduced or even reversed when they are individually replaced by alanine. These residues are likely responsible for differential interaction of the enzyme with the substrates which leads to distinction between the normal and aberrant precursors in the enterobactin assembly line. These results show that the type II thioesterase evolves its distinctive ability to recognize the aberrant intermediates from the versatile catalytic platform of hotdog proteins and suggests an active search mechanism for type II thioesterases in nonribosomal peptide synthesis.


Amino Acids/metabolism , Catalytic Domain , Enterobactin/biosynthesis , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Fatty Acid Synthases/metabolism , Mutagenesis, Site-Directed , Thiolester Hydrolases/metabolism , Crystallography, X-Ray , Escherichia coli/drug effects , Escherichia coli Proteins/chemistry , Hydrogen-Ion Concentration/drug effects , Hydrolysis/drug effects , Hydroxybenzoates/pharmacology , Kinetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Ribosomes/drug effects , Ribosomes/metabolism , Substrate Specificity/drug effects , Temperature , Thiolester Hydrolases/chemistry
10.
Biochemistry ; 47(11): 3426-34, 2008 Mar 18.
Article En | MEDLINE | ID: mdl-18284213

Menaquinone is a lipid-soluble molecule that plays an essential role as an electron carrier in the respiratory chain of many bacteria. We have previously shown that its biosynthesis in Escherichia coli involves a new intermediate, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and requires an additional enzyme to convert this intermediate into (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). Here, we report the identification and characterization of MenH (or YfbB), an enzyme previously proposed to catalyze a late step in menaquinone biosynthesis, as the SHCHC synthase. The synthase catalyzes a proton abstraction reaction that results in 2,5-elimination of pyruvate from SEPHCHC and the formation of SHCHC. It is an efficient enzyme ( k cat/ K M = 2.0 x 10 (7) M (-1) s (-1)) that provides a smaller transition-state stabilization than other enzymes catalyzing proton abstraction from carbon acids. Despite its lack of the proposed thioesterase activity, the SHCHC synthase is homologous to the well-characterized C-C bond hydrolase MhpC. The crystallographic structure of the Vibrio cholerae MenH protein closely resembles that of MhpC and contains a Ser-His-Asp triad typical of serine proteases. Interestingly, this triad is conserved in all MenH proteins and is essential for the SHCHC synthase activity. Mutational analysis found that the catalytic efficiency of the E. coli protein is reduced by 1.4 x 10 (3), 2.1 x 10 (5), and 9.3 x 10 (3) folds when alanine replaces serine, histidine, and aspartate of the triad, respectively. These results show that the SHCHC synthase is closely related to alpha/beta hydrolases but catalyzes a reaction mechanistically distinct from all known hydrolase reactions.


Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Oxo-Acid-Lyases/chemistry , Vitamin K 2/metabolism , Catalysis , Conserved Sequence , Cyclohexanes , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Oxo-Acid-Lyases/biosynthesis , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/isolation & purification , Salicylates/chemistry , Salicylates/metabolism , Succinates/chemistry , Succinates/metabolism , Vitamin K 2/chemical synthesis
11.
Org Lett ; 10(4): 649-52, 2008 Feb 21.
Article En | MEDLINE | ID: mdl-18211078

Nonribosomal enterobactin synthetase of Escherichia coli was found to prematurely release a large amount of linear precursors in an in vitro reconstitution. However, these side products are suppressed to negligible levels by polymeric cosolvents that create macromolecular crowding, a prominent feature of the intracellular environment. These findings show that macromolecular crowding is essential to normal functioning of the nonribosomal peptide synthetase and suggest that it may be crucial to biotechnological utilization of similar enzyme systems.


Enterobactin/biosynthesis , Escherichia coli/metabolism , Ligases/metabolism , Multienzyme Complexes/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Biological , Molecular Structure
12.
Biochemistry ; 46(38): 10979-89, 2007 Sep 25.
Article En | MEDLINE | ID: mdl-17760421

Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that the genuine MenD product is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid (SEPHCHC), rather than SHCHC. This is supported by the following findings: (i) isochorismate consumption and SHCHC formation are not synchronized in the enzymic reaction, (ii) the rate of SHCHC formation is independent of the enzyme concentration, (iii) SHCHC is not formed in weakly acidic or neutral solutions in which the isochorismate substrate is readily consumed by MenD, and (iv) the MenD turnover product, formed under conditions disabling SHCHC formation, possesses spectroscopic characteristics consistent with the structure of SEPHCHC and spontaneously undergoes 2,5-elimination to form SHCHC and pyruvate in weakly basic solutions. Two properties of the intermediate, ultraviolet transparency and chemical instability, provide a rationale for the fact that SHCHC has been consistently mistaken as the MenD product. In accordance with these findings, MenD was rediscovered to be a highly efficient enzyme with a high second-order rate constant and should be renamed SEPHCHC synthase. Intriguingly, the enzymatic activity responsible for conversion of SEPHCHC into SHCHC appears not to associate with any of the known enzymes in menaquinone biosynthesis but is present in the crude extract of E. coli K12, suggesting that a genuine SHCHC synthase remains to be identified to fully elucidate the ubiquitous biosynthetic pathway.


Biosynthetic Pathways/physiology , Cyclohexanecarboxylic Acids/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli/enzymology , Keto Acids/metabolism , Oxo-Acid-Lyases/metabolism , Salicylates/metabolism , Succinates/metabolism , Vitamin K 2/metabolism , Catalysis , Chorismic Acid/chemistry , Chorismic Acid/metabolism , Chromatography, High Pressure Liquid , Cyclohexanecarboxylic Acids/chemistry , Cyclohexanecarboxylic Acids/isolation & purification , Cyclohexanes , Cyclohexenes/chemistry , Cyclohexenes/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydrogen-Ion Concentration , Keto Acids/chemistry , Keto Acids/isolation & purification , Reference Standards , Salicylates/chemistry , Salicylates/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Succinates/chemistry , Succinates/pharmacokinetics , Tandem Mass Spectrometry , Terminology as Topic , Vitamin K 2/chemistry
13.
J Virol ; 79(6): 3401-8, 2005 Mar.
Article En | MEDLINE | ID: mdl-15731234

Severe acute respiratory syndrome (SARS) is a recently emerged infectious disease caused by a novel strain of coronavirus. Examination of the immune responses of patients who have recovered from SARS should provide important information for design of a safe and effective vaccine. We determined the continuous viral epitopes targeted by antibodies in plasma samples from convalescent SARS patients through biopanning with a vast M13 phage display dodecapeptide library. These epitopes converged to very short peptide fragments, one on each of the structural proteins spike and nucleocapsid and the nonstructural proteins 3a, 9b, and nsp 3. Immunoassays found that most of the patients who had recovered from SARS developed complementary antibodies to the epitope-rich region on the spike S2 protein, indicating that this is an immunodominant site on the viral envelope comprising the spike, matrix, and small envelope glycoproteins. These S2-targeting antibodies were shown to effectively neutralize the coronavirus, indicating that they provided protective immunity to help the patients recover from the viral infection. These results suggest that the SARS coronavirus might have an antigenic profile distinct from those of other human or animal coronaviruses. Due to the tested safety and protective effects of the convalescent-phase serological antibodies, identification of their complementary antigens may enable the design of an epitope-based vaccine to prevent potential antibody-mediated immunopathology.


Antigens, Viral/immunology , B-Lymphocytes/immunology , Immunodominant Epitopes , Membrane Glycoproteins/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/immunology , Adult , Aged , Antibodies, Viral/blood , Coronavirus Nucleocapsid Proteins , Epitope Mapping , Hong Kong , Humans , Middle Aged , Neutralization Tests , Nucleocapsid Proteins/immunology , Peptide Library , Spike Glycoprotein, Coronavirus , Viral Nonstructural Proteins , Viral Proteins/immunology , Viroporin Proteins
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(11): 1395-9, 2004 Nov.
Article Zh | MEDLINE | ID: mdl-15762486

Sulfite reacts with o-phthalaldehyde in the presence of ammonium forming the highly fluorescing isoindole-1-sulfonate in neutral or weakly acid solution, and formaldehyde has inhibitory effect on it. Based on this principle, the authors developed the direct fluorophotometric and flow-injection fluorophotometric methods for the determination of trace formaldehyde. The maximum excitation wavelength and the maximum emission wavelength are 320 and 390 nm respectively. With the direct fluorophotometric method, formaldehyde in the concentration range of 0.10-1.60 microg x mL(-1) can be determined with a detection limit of 0.046 microg x mL(-1). With the flow-injection fluorophotometric method, formaldehyde in the concentration range of 0.10-2.00 microg x mL(-1) can be determined with a detection limit of 0.085 microg x mL(-1). The methods were applied respectively to the analysis of river water with satisfactory results.


Flow Injection Analysis/methods , Fluorophotometry/methods , Formaldehyde/analysis , Luminescent Measurements , Limit of Detection , Reference Standards , o-Phthalaldehyde/analysis
...