Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365297

ABSTRACT

Enterolobium cyclocarpum and Piscidia piscipula are two important tree Fabaceae species distributed from the Yucatan Peninsula, Mexico. Our aims were focused on the E. cyclocarpum and P. piscipula seeds for: (1) to examine the seed permeability and imbibition rate, (2) to evaluate the effect of seed pre-germinative treatments, and (3) to characterize the structures involved on the presence of physical dormancy (PY). We used fresh seeds to determine seed permeability and imbibition rate, seed viability by means of tetrazolium test, furthermore, we applied mechanical scarification and boiler shocks for 5 s, 10 s and 15 s treatments. Morphological characterization of the seed coat was by Scanning Electron Microscope (SEM). Seed viability in E. cyclocarpum and P. piscipula were 100% and 96%, respectively. Seed permeability and imbibition rate in E. cyclocarpum were low. The highest germination in E. cyclocarpum was in the mechanical scarification (92%), while in P. piscipula, this parameter was in the 10 s boiling water treatment (76.0%). The presence of PY was confirmed in both species because they showed low seed permeability, and imbibition rate; furthermore, exhibited macrosclereids cells. The present research seeks to promote the sustainable use of E. cyclocarpum and P. piscipula.

2.
Toxicol Rep ; 5: 593-597, 2018.
Article in English | MEDLINE | ID: mdl-29854629

ABSTRACT

The seeds germination, stem and root elongation of water lettuces (Lactuca sativa L) were used to evaluate the phytotoxicity of water and soil of Champotón River, Campeche, Mexico. water and soil sample were collected from two sampling sites. Lettuce seeds were exposed to three different dilutions of water and aqueous extract of soil. Significant differences on germination, root and stem elongation of lettuce were detected. Water showed more phytotoxic effect than aqueous extract of soil and inhibitory concentration 50 (IC50) for radicle exposed to river water was 52% while stem elongation was 69%. Due to paucity the previously available phytotoxicological studies onto Champotón River, it is now essential to allocate time and resources to consider development of suitable chronic phytotoxicity tests.

3.
J Sci Food Agric ; 97(12): 4117-4123, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28220491

ABSTRACT

BACKGROUND: The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. RESULTS: One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. CONCLUSION: This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry.


Subject(s)
Drug Resistance, Multiple, Bacterial , Food Contamination/analysis , Opuntia/microbiology , Salmonella/drug effects , Vegetables/microbiology , Anti-Bacterial Agents/pharmacology , Food Microbiology , Mexico , Salmonella/classification , Salmonella/genetics , Salmonella/isolation & purification
4.
Food Microbiol ; 59: 97-103, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27375249

ABSTRACT

The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander.


Subject(s)
Coriandrum/microbiology , Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/isolation & purification , Food Contamination/analysis , Food Microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Load , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/growth & development , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/growth & development , Mexico , Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/growth & development , Temperature
5.
Foodborne Pathog Dis ; 13(5): 269-74, 2016 05.
Article in English | MEDLINE | ID: mdl-26954710

ABSTRACT

The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Food Microbiology , Vegetables/microbiology , Bacterial Load , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/drug effects , Humans , Mexico , Shiga-Toxigenic Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...