Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ACS Sens ; 9(6): 2935-2945, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38848141

ABSTRACT

Detection of analytes using streaming current has previously been explored using both experimental approaches and theoretical analyses of such data. However, further developments are needed for establishing a viable microchip that can be exploited to deliver a sensitive, robust, and scalable biosensor device. In this study, we demonstrated the fabrication of such a device on silicon wafer using a scalable silicon microfabrication technology followed by characterization and optimization of this sensor for detection of small extracellular vesicles (sEVs) with sizes in the range of 30 to 200 nm, as determined by nanoparticle tracking analyses. We showed that the sensitivity of the devices, assessed by a common protein-ligand pair and sEVs, significantly outperforms previous approaches using the same principle. Two versions of the microchips, denoted as enclosed and removable-top microchips, were developed and compared, aiming to discern the importance of high-pressure measurement versus easier and better surface preparation capacity. A custom-built chip manifold allowing easy interfacing with standard microfluidic connections was also constructed. By investigating different electrical, fluidic, morphological, and fluorescence measurements, we show that while the enclosed microchip with its robust glass-silicon bonding can withstand higher pressure and thus generate higher streaming current, the removable-top configuration offers several practical benefits, including easy surface preparation, uniform probe conjugation, and improvement in the limit of detection (LoD). We further compared two common surface functionalization strategies and showed that the developed microchip can achieve both high sensitivity for membrane protein profiling and low LoD for detection of sEV detection. At the optimum working condition, we demonstrated that the microchip could detect sEVs reaching an LoD of 104 sEVs/mL (when captured by membrane-sensing peptide (MSP) probes), which is among the lowest in the so far reported microchip-based methods.


Subject(s)
Extracellular Vesicles , Silicon , Silicon/chemistry , Extracellular Vesicles/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Humans , Limit of Detection
2.
Talanta ; 259: 124553, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37084607

ABSTRACT

Precision cancer medicine has changed the treatment landscape of non-small cell lung cancer (NSCLC) as illustrated by the introduction of tyrosine kinase inhibitors (TKIs) towards mutated epidermal growth factor receptor (EGFR). However, as responses to EGFR-TKIs are heterogenous among NSCLC patients, there is a need for ways to early monitor changes in treatment response in a non-invasive way e.g., in patient's blood samples. Recently, extracellular vesicles (EVs) have been identified as a source of tumor biomarkers which could improve on non-invasive liquid biopsy-based diagnosis of cancer. However, the heterogeneity in EVs is high. Putative biomarker candidates may be hidden in the differential expression of membrane proteins in a subset of EVs hard to identify using bulk techniques. Using a fluorescence-based approach, we demonstrate that a single-EV technique can detect alterations in EV surface protein profiles. We analyzed EVs isolated from an EGFR-mutant NSCLC cell line, which is refractory to EGFR-TKIs erlotinib and responsive to osimertinib, before and after treatment with these drugs and after cisplatin chemotherapy. We studied expression level of five proteins; two tetraspanins (CD9, CD81), and three markers of interest in lung cancer (EGFR, programmed death-ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)). The data reveal alterations induced by the osimertinib treatment compared to the other two treatments. These include the growth of the PD-L1/HER2-positive EV population, with the largest increase in vesicles exclusively expressing one of the two proteins. The expression level per EV decreased for these markers. On the other hand, both the TKIs had a similar effect on the EGFR-positive EV population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , ErbB Receptors/genetics
3.
Biosens Bioelectron ; 227: 115142, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36805937

ABSTRACT

High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Static Electricity , Electricity , Antibodies , Membrane Proteins
4.
J Extracell Vesicles ; 11(11): e12277, 2022 11.
Article in English | MEDLINE | ID: mdl-36329610

ABSTRACT

Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/genetics , Biomarkers/metabolism , Cell Line , Membrane Proteins/metabolism
5.
Mol Oncol ; 16(20): 3620-3641, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35838333

ABSTRACT

The prognosis of metastatic urothelial carcinoma (mUC) patients is poor, and early prediction of systemic therapy response would be valuable to improve outcome. In this exploratory study, we investigated protein profiles in sequential plasma-isolated extracellular vesicles (EVs) from a subset of mUC patients treated within a Phase I trial with vinflunine combined with sorafenib. The isolated EVs were of exosome size and expressed exosome markers CD9, TSG101 and SYND-1. We found, no association between EVs/ml plasma at baseline and progression-free survival (PFS). Protein profiling of EVs, using an antibody-based 92-plex Proximity Extension Assay on the Oncology II® platform, revealed a heterogeneous protein expression pattern. Qlucore bioinformatic analyses put forward a protein signature comprising of SYND-1, TNFSF13, FGF-BP1, TFPI-2, GZMH, ABL1 and ERBB3 to be putatively associated with PFS. Similarly, a protein signature from EVs that related to best treatment response was found, which included FR-alpha, TLR 3, TRAIL and FASLG. Several of the markers in the PFS or best treatment response signatures were also identified by a machine learning classification algorithm. In conclusion, protein profiling of EVs isolated from plasma of mUC patients shows a potential to identify protein signatures that may associate with PFS and/or treatment response.


Subject(s)
Carcinoma, Transitional Cell , Extracellular Vesicles , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Toll-Like Receptor 3/metabolism , Urinary Bladder Neoplasms/pathology , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Treatment Outcome
6.
Cell Death Discov ; 8(1): 284, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690610

ABSTRACT

The antibody conjugate gemtuzumab ozogamicin (GO; Mylotarg®) provides targeted therapy of acute myeloid leukemia (AML), with recent approvals for patients with CD33-positive disease at diagnosis or relapse, as monotherapy or combined with chemotherapeutics. While its clinical efficacy is well documented, the molecular routes by which GO induces AML cell death warrant further analyses. We have earlier reported that this process is initiated via mitochondria-mediated caspase activation. Here we provide additional data, focusing on the involvement of caspase-2 in this mechanism. We show that this enzyme plays an important role in triggering apoptotic death of human AML cells after exposure to GO or its active moiety calicheamicin. Accordingly, the caspase-2 inhibitor z-VDVAD-fmk reduced GO-induced caspase-3 activation. This finding was validated with shRNA and siRNA targeting caspase-2, resulting in reduced caspase-3 activation and cleavage of poly [ADP-ribose] polymerase 1 (PARP-1). We previously demonstrated that GO-induced apoptosis included a conformational change of Bax into a pro-apoptotic state. Present data reveal that GO-treatment also induced Bid cleavage, which was partially reduced by caspase-2 specific inhibition while the effect on GO-induced Bax conformational change remained unaltered. In mononuclear cells isolated from AML patients that responded to GO treatment in vitro, processing of caspase-2 was evident, whereas in cells from an AML patient refractory to treatment no such processing was seen. When assessing diagnostic samples from 22 AML patients, who all entered complete remission (CR) following anthracycline-based induction therapy, and comparing patients with long versus those with short CR duration no significant differences in baseline caspase-2 or caspase-3 full-length protein expression levels were found. In summary, we demonstrate that GO triggers caspase-2 cleavage in human AML cells and that the subsequent apoptosis of these cells in part relies on caspase-2. These findings may have future clinical implications.

7.
Mar Drugs ; 20(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35447938

ABSTRACT

A series of twenty-three linear and branched chain mono acetylene lipids were isolated from the Caribbean Sea sponge Cribrochalina vasculum. Seventeen of the compounds, 1-17, are new, while six, 18-23, were previously characterized from the same sponge. Some of the new acetylene-3-hydroxy alkanes 1, 6, 7, 8, 10 were tested for selective cytotoxicity in non-small cell lung carcinoma (NSCLC) cells over WI-38 normal diploid lung fibroblasts. Compound 7, presented clear tumor selective activity while, 1 and 8, showed selectivity at lower doses and 6 and 10, were not active towards NSCLC cells at all. The earlier reported selective cytotoxicity of some acetylene-3-hydroxy alkanes (scal-18 and 23), in NSCLC cells and/or other tumor cell types were also confirmed for 19, 20 and 22. To further study the structure activity relationships (SAR) of this group of compounds, we synthesized several derivatives of acetylene-3-hydroxy alkanes, rac-18, scal-S-18, R-18, rac-27, rac-32, R-32, S-32, rac-33, rac-41, rac-42, rac-43, rac-45, rac-48 and rac-49, along with other 3-substituted derivatives, rac-35, rac-36, rac-37, rac-38, rac-39 and rac-40, and assessed their cytotoxic activity against NSCLC cells and diploid fibroblasts. SAR studies revealed that the alcohol moiety at position 3 and its absolute R configuration both were essential for the tumor cell line selective activity while for its cytotoxic magnitude the alkyl chain length and branching were of less significance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Acetylene/therapeutic use , Alkanes , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Structure-Activity Relationship
8.
ACS Appl Mater Interfaces ; 13(36): 42513-42521, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34473477

ABSTRACT

We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.


Subject(s)
Biosensing Techniques/methods , Extracellular Vesicles/chemistry , Static Electricity , Antibodies, Immobilized/immunology , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Cell Line, Tumor , Electrochemical Techniques , ErbB Receptors/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/immunology , Humans , Limit of Detection , Protein Kinase Inhibitors/pharmacology , Tetraspanin 29/analysis , Tetraspanin 29/metabolism
9.
Biosens Bioelectron ; 193: 113568, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34428672

ABSTRACT

Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Humans , Liquid Biopsy , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/therapeutic use
10.
Cancers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671073

ABSTRACT

Ephrin (EFN)/ Erythropoietin-producing human hepatocellular receptors (Eph) signaling has earlier been reported to regulate non-small cell lung cancer (NSCLC) cell survival and cell death as well as invasion and migration. Here, the role of Ephrin type-A receptor 2 (EphA2) on the DNA damage response (DDR) signaling and ionizing radiation (IR) cellular effect was studied in NSCLC cells. Silencing of EphA2 resulted in IR sensitization, with increased activation of caspase-3, PARP-1 cleavage and reduced clonogenic survival. Profiling of EphA2 expression in a NSCLC cell line panel showed a correlation to an IR refractory phenotype. EphA2 was found to be transiently and rapidly phosphorylated at Ser897 in response to IR, which was paralleled with the activation of ribosomal protein S6 kinase (RSK). Using cell fractionation, a transient increase in both total and pSer897 EphA2 in the nuclear fraction in response to IR was revealed. By immunoprecipitation and LC-MS/MS analysis of EphA2 complexes, nuclear localized EphA2 was found in a complex with DNA-PKcs. Such complex formation rapidly increased after IR but returned back to basal level within an hour. Targeting EphA2 with siRNA or by treatment with EFNA1 ligand partly reduced phosphorylation of DNA-PKcs at S2056 at early time points after IR. Thus, we report that EphA2 interacts with DNA-PKcs in the cell nucleus suggesting a novel mechanism involving the EphA2 receptor in DDR signaling and IR responsiveness.

11.
Mol Oncol ; 15(11): 2941-2957, 2021 11.
Article in English | MEDLINE | ID: mdl-33768639

ABSTRACT

Biomarker signatures identified through minimally invasive procedures already at diagnosis of non-small-cell lung cancer (NSCLC) could help to guide treatment with immune checkpoint inhibitors (ICI). Here, we performed multiplex profiling of immune-related proteins in fine-needle aspirate (FNA) samples of thoracic lesions from patients with NSCLC to assess PD-L1 expression and identify related protein signatures. Transthoracic FNA samples from 14 patients were subjected to multiplex antibody-based profiling by proximity extension assay (PEA). PEA profiling employed protein panels relevant to immune and tumor signaling and was followed by Qlucore® Omics Explorer analysis. All lesions analyzed were NSCLC adenocarcinomas, and PEA profiles could be used to monitor 163 proteins in all but one sample. Multiple key immune signaling components (including CD73, granzyme A, and chemokines CCL3 and CCL23) were identified and expression of several of these proteins (e.g., CCL3 and CCL23) correlated to PD-L1 expression. We also found EphA2, a marker previously linked to inferior NSCLC prognosis, to correlate to PD-L1 expression. Our identified protein signatures related to stage included, among others, CXCL10 and IL12RB1. We conclude that transthoracic FNA allows for extensive immune and tumor protein profiling with assessment of putative biomarkers of important for ICI treatment selection in NSCLC.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Biopsy, Fine-Needle , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology
12.
Cancers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671772

ABSTRACT

Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.

13.
Nanoscale Adv ; 3(11): 3053-3063, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133670

ABSTRACT

Nanosized extracellular vesicles (EVs) have been found to play a key role in intercellular communication, offering opportunities for both disease diagnostics and therapeutics. However, lying below the diffraction limit and also being highly heterogeneous in their size, morphology and abundance, these vesicles pose significant challenges for physical characterization. Here, we present a direct visual approach for their accurate morphological and size-based profiling by using scanning electron microscopy (SEM). To achieve that, we methodically examined various process steps and developed a protocol to improve the throughput, conformity and image quality while preserving the shape of EVs. The study was performed with small EVs (sEVs) isolated from a non-small-cell lung cancer (NSCLC) cell line as well as from human serum, and the results were compared with those obtained from nanoparticle tracking analysis (NTA). While the comparison of the sEV size distributions showed good agreement between the two methods for large sEVs (diameter > 70 nm), the microscopy based approach showed a better capacity for analyses of smaller vesicles, with higher sEV counts compared to NTA. In addition, we demonstrated the possibility of identifying non-EV particles based on size and morphological features. The study also showed process steps that can generate artifacts bearing resemblance with sEVs. The results therefore present a simple way to use a widely available microscopy tool for accurate and high throughput physical characterization of EVs.

14.
ACS Sens ; 4(5): 1399-1408, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31020844

ABSTRACT

Small extracellular vesicles (sEVs) generated from the endolysosomal system, often referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics, as they carry valuable biological information and reflect their cells of origin. Herein, we propose a simple and inexpensive electrical method for label-free detection and profiling of sEVs in the size range of exosomes. The detection method is based on the electrokinetic principle, where the change in the streaming current is monitored as the surface markers of the sEVs interact with the affinity reagents immobilized on the inner surface of a silica microcapillary. As a proof-of-concept, we detected sEVs derived from the non-small-cell lung cancer (NSCLC) cell line H1975 for a set of representative surface markers, such as epidermal growth factor receptor (EGFR), CD9, and CD63. The detection sensitivity was estimated to be ∼175000 sEVs, which represents a sensor surface coverage of only 0.04%. We further validated the ability of the sensor to measure the expression level of a membrane protein by using sEVs displaying artificially altered expressions of EGFR and CD63, which were derived from NSCLC and human embryonic kidney (HEK) 293T cells, respectively. The analysis revealed that the changes in EGFR and CD63 expressions in sEVs can be detected with a sensitivity in the order of 10% and 3%, respectively, of their parental cell expressions. The method can be easily parallelized and combined with existing microfluidic-based EV isolation technologies, allowing for rapid detection and monitoring of sEVs for cancer diagnosis.


Subject(s)
Electric Conductivity , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , HEK293 Cells , Humans , Tetraspanin 30/metabolism
15.
Lung Cancer ; 124: 45-52, 2018 10.
Article in English | MEDLINE | ID: mdl-30268479

ABSTRACT

HYPOTHESIS: The inherent challenges associated with tissue biopsies from lung have spurred an interest in the use of liquid biopsies. Pleural effusions are one source of liquid biopsy. Recently, extracellular vesicles of endocytic origin, exosomes, have attracted interest as liquid biopsy of tumors as they are thought to be a mirror of their tumor of origin. Here, we aimed to analyze if RNA profiling of exosomes isolated from pleural effusions could differentiate patients with lung adenocarcinoma from patients with benign inflammatory processes. METHODS: Exosomes were isolated from 36 pleural effusions from patients with adenocarcinoma (n = 18) and patients with benign inflammatory processes (n = 18). The two groups were balanced with respect to age and smoking history but with a gender bias towards males in the benign group. Profiling was conducted using RT-qPCR arrays covering 754 microRNAs and 624 mRNAs followed by statistical ranking of differentially regulated transcripts between the two patient cohorts. RESULTS: RNA profiling revealed differential expression of 17 microRNAs and 71 mRNAs in pleural effusions collected from patients with lung adenocarcinoma compared to pleural effusions from benign lung disease. Overall, top differentially expressed microRNAs, including miR-200 family microRNAs, provided a stronger diagnostic power compared to top differentially expressed mRNAs. However, the mRNA transcript encoding Lipocalin-2 (LCN2) displayed the strongest diagnostic power of all analyzed transcripts (AUC: 0.9916). CONCLUSIONS: Our study demonstrates that exosomal RNA profiling from pleural effusions can be used to identify patients with lung adenocarcinoma from individuals with benign processes and further proposes miR-200 microRNAs and LCN2 as diagnostic markers in lung cancer liquid biopsies.


Subject(s)
Adenocarcinoma/diagnosis , Exosome Multienzyme Ribonuclease Complex/genetics , Lipocalin-2/genetics , Lung Neoplasms/diagnosis , MicroRNAs/genetics , Pleural Effusion/genetics , Pneumonia/diagnosis , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Gene Expression Profiling , Humans , Lipocalin-2/metabolism , Liquid Biopsy , Male , Middle Aged , Neoplasm Staging
16.
Int J Radiat Oncol Biol Phys ; 100(1): 174-187, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29107335

ABSTRACT

PURPOSE: We previously reported that sphere-forming non-small cell lung cancer (NSCLC) tumor-initiating cells (TICs) have an altered activation of DNA damage response- and repair proteins and are refractory to DNA-damaging treatments. We analyzed whether chromatin organization plays a role in the observed refractoriness. METHODS AND MATERIALS: Bulk cells and TICs from the NSCLC H23 and H1299 cell lines were examined using cell viability, clonogenic survival, Western blot, short interfering RNA analysis, and micronucleus assay. RESULTS: NSCLC TICs displayed elevated heterochromatin markers trimethylated lysine 9 of histone H3 and heterochromatin protein 1γ relative to bulk cells and reduced cell viability upon histone deacetylase inhibition (HDACi). Vorinostat and trichostatin A increased the euchromatin markers acetylated lysine 9/14 of histone H3 and lysine 8 of histone H4, and HDACi pretreatment increased the phosphorylation of the DNA damage response proteins ataxia telangiectasia mutated and DNA-dependent protein kinase, catalytic subunit, upon irradiation in TICs. HDACi sensitized TICs to cisplatin and to some extent to ionizing irradiation. The protectiveness of a dense chromatin structure was indicated by an enhanced frequency of micronuclei in TICs following irradiation, after knockdown of heterochromatin protein 1γ. CONCLUSIONS: Although confirmatory studies in additional NSCLC model systems and with respect to analyses of other DNA damage response proteins are needed, our data point toward a heterochromatic structure of NSCLC TICs, such that HDACi can sensitize TICs to DNA damage.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Chromatin/drug effects , DNA Damage , Histone Deacetylase Inhibitors/pharmacology , Lung Neoplasms/pathology , Neoplastic Stem Cells/drug effects , AC133 Antigen/metabolism , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Cell Line, Tumor , Cell Survival , Chromatin/chemistry , Chromosomal Proteins, Non-Histone/genetics , Cisplatin/pharmacology , Heterochromatin/chemistry , Heterochromatin/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Micronucleus Tests , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/chemistry , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Phosphorylation , RNA, Small Interfering/analysis , SOXB1 Transcription Factors/metabolism
17.
Radiat Oncol ; 12(1): 206, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29284495

ABSTRACT

BACKGROUND: Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. METHODS: The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). RESULTS: TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the "skin sparing effect". Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. CONCLUSIONS: Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Electric Stimulation Therapy , Glioma/radiotherapy , Phantoms, Imaging , Skin Diseases/prevention & control , Animals , Glioma/genetics , Glioma/pathology , Humans , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured
18.
Oncotarget ; 7(37): 60332-60347, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27533087

ABSTRACT

Ephrin receptors (Ephs) are reported to control metastatic signaling of non-small cell lung cancer (NSCLC) and other tumors. Here we show for the first time that blocking expression of the Eph ligand Ephrin B3 inhibits NSCLC cell migration and invasion. We demonstrate that Ephrin B3 directly binds the EphAs EphA2, EphA3, EphA4, and EphA5. EphA2 Ser897 was previously shown to drive migration propensity of tumor cells and our study reveals that EphA2 stays phosphorylated on Ser897 in the Ephrin B3/EphA2 complex in NSCLC cells of different histology. Moreover, we report that within such Ephrin B3/EphA2 complex both Akt Ser 129 and p38MAPK are found indicating a potential to drive migration/proliferation. We also found the EMT marker E-cadherin expression to be maintained or increased upon Ephrin B3 blockade in NSCLC cells. Expression of Ephrin B3 was furthermore analyzed in a cohort of NSCLC stage IA-IB cases (n=200) alongside EphA2 and Ephrin A1. We found that Ephrin B3 was concomitantly expressed with EphA2 and Ephrin A1 with higher Ephrin B3 levels found in non-squamous than in squamous tumors, whereas EphA2 was higher expressed in well-differentiated than in low-differentiated tumors. In the entire NSCLC cohort, Ephrin B3 expression was not linked to patient survival, whereas a high EphA2 expression was associated with improved survival (p=0.03). In conclusion, we show that blocking Ephrin B3 expression inhibits NSCLC proliferation-, migration- and invasion capacity which calls for further studies on interference with Ephrin B3 as a possible therapeutic avenue in this tumor malignancy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Movement/genetics , Ephrin-B3/genetics , Lung Neoplasms/genetics , Receptors, Eph Family/genetics , A549 Cells , Aged , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Ephrin-A1/genetics , Ephrin-A1/metabolism , Ephrin-B3/metabolism , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness , Protein Binding , RNA Interference , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Receptors, Eph Family/metabolism
19.
Oncotarget ; 7(31): 50258-50276, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27384680

ABSTRACT

In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rß as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rß but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Porifera/chemistry , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Survival , ErbB Receptors/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Insulin Receptor Substrate Proteins/metabolism , Lung Neoplasms/drug therapy , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, IGF Type 1/drug effects , Receptor, Insulin/drug effects , Signal Transduction , Tyrphostins/pharmacology
20.
Mol Oncol ; 10(5): 719-34, 2016 05.
Article in English | MEDLINE | ID: mdl-26827254

ABSTRACT

BACKGROUND: Chemotherapy options in advanced urothelial carcinoma (UC) remain limited. Here we evaluated the peptide-based alkylating agent melphalan-flufenamide (mel-flufen) for UC. METHODS: UC cell lines J82, RT4, TCCsup and 5637 were treated with mel-flufen, alone or combined with cisplatin, gemcitabine, dasatinib or bestatin. Cell viability (MTT assay), intracellular drug accumulation (liquid chromatography) apoptosis induction (apoptotic cell nuclei morphology, western blot analysis of PARP-1/caspase-9 cleavage and Bak/Bax activation) were evaluated. Kinome alterations were characterized by PathScan array and phospho-Src validated by western blotting. Aminopeptidase N (ANPEP) expression was evaluated in UC clinical specimens in relation to patient outcome. RESULTS: In J82, RT4, TCCsup and 5637 UC cells, mel-flufen amplified the intracellular loading of melphalan in part via aminopeptidase N (ANPEP), resulting in increased cytotoxicity compared to melphalan alone. Mel-flufen induced apoptosis seen as activation of Bak/Bax, cleavage of caspase-9/PARP-1 and induction of apoptotic cell nuclei morphology. Combining mel-flufen with cisplatin or gemcitabine in J82 cells resulted in additive cytotoxic effects and for gemcitabine also increased apoptosis induction. Profiling of mel-flufen-induced kinome alterations in J82 cells revealed that mel-flufen alone did not inhibit Src phosphorylation. Accordingly, the Src inhibitor dasatinib sensitized for mel-flufen cytotoxicity. Immunohistochemical analysis of the putative mel-flufen biomarker ANPEP demonstrated prominent expression levels in tumours from 82 of 83 cystectomy patients. Significantly longer median overall survival was found in patients with high ANPEP expression (P = 0.02). CONCLUSION: Mel-flufen alone or in combination with cisplatin, gemcitabine or Src inhibition holds promise as a novel treatment for UC.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Dasatinib/pharmacology , Melphalan/analogs & derivatives , Phenylalanine/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Urologic Neoplasms/drug therapy , src-Family Kinases/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Humans , Melphalan/pharmacology , Phenylalanine/pharmacology , Urologic Neoplasms/pathology , Urothelium/drug effects , Urothelium/pathology , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...