Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 39(6): 617-628, 2023.
Article in English | MEDLINE | ID: mdl-37580896

ABSTRACT

Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.


Subject(s)
Biofilms , Salmonella enterica , Salmonella enterica/genetics , Vorinostat/pharmacology , Virulence , Serogroup , Histone Deacetylase Inhibitors/pharmacology , Kentucky , Rubber , Quorum Sensing , Polyesters/pharmacology
2.
Poult Sci ; 100(7): 101209, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34089933

ABSTRACT

Salmonella is a foodborne pathogen and an emerging zoonotic bacterial threat in the food industry. The aim of this study was to evaluate the biofilm formation by a cocktail culture of 3 wild isolates of Salmonella enterica serotype Kentucky on plastic (PLA), silicon rubber (SR), and chicken skin surfaces under various temperatures (4, 10, 25, 37, and 42°C) and pH values (4.0, 5.0, 6.0, 7.0, and 8.0). Then, at the optimum temperature and pH, the effects of supplementation with glucose (0, 0.025, 0.05, and 0.4% w/v) on biofilm formation were assessed on each of the surfaces. The results indicated that higher temperatures (25 to 42°C) and pH values (7.0 and 8.0) led to more robust biofilm formation than lower temperatures (4 and 10°C) and lower pH levels (4.0 to 6.0). Moreover, biofilm formation was induced by 0.025% glucose during incubation at the optimum temperature (37°C) and pH (7.0) but inhibited by 0.4% glucose. Consistent with this finding, virulence related gene (rpoS, rpoH, hilA, and avrA) expression was increased at 0.025% glucose and significantly reduced at 0.4% glucose. This results also confirmed by field emission scanning electron microscope, confocal laser scanning microscopy, and autoinducer-2 determination. This study concluded that optimum environmental conditions (temperature 37°C, pH 7.0, and 0.25% glucose) exhibited strong biofilm formation on food and food contract surfaces as well as increased the virulence gene expression levels, indicating that these environmental conditions might be threating conditions for food safety.


Subject(s)
Salmonella enterica , Animals , Biofilms , Chickens , Gene Expression , Glucose , Hydrogen-Ion Concentration , Kentucky , Serogroup , Temperature , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL